Code: AE51/AC51/AT51 Subjection

Subject: ENGINEERING MATHEMATICS - I

AMIETE - ET/CS/IT

Time: 3 Hours

DECEMBER 2013

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. If
$$u = \frac{x}{y+z} + \frac{y}{z+x} + \frac{z}{x+y}$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$ is equal to

(A) 0

(B) 1

(C) 2

 $(\mathbf{D}) x+y+z$

b. The rank of the matrix
$$\begin{bmatrix} 2 & -1 & 3 & 1 \\ 1 & 4 & -2 & 1 \\ 5 & 2 & 4 & 3 \end{bmatrix}$$
 is

(A) 1

(B) 2

(C) 3

(D) 4

c. The value of the double integral
$$\int_{0}^{2a} \int_{0}^{\frac{x^2}{4a}} xy \, dy \, dx$$
 is

(A) a⁴

(B) $\frac{a^4}{2}$

(C) $\frac{a^4}{3}$

- **(D)** $\frac{a^4}{4}$
- d. Iterative formula for finding approximate root of f(n) = 0, using Newton-Raphson method, is

Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS - I

(A)
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

(B)
$$x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}$$

(C)
$$x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$$

(D)
$$x_{n+1} = x_n + \frac{f'(x_n)}{f(x_n)}$$

- e. The differential equation $\left(y^2e^{xy^2} + 4x^3\right)dx + \left(Kxye^{xy^2} 3y^2\right)dy = 0$ is exact if K is equal to
 - (A) 0

(B) 1

(C) 2

- **(D)** 3
- f. The solution of differential equation $4\frac{d^3y}{dx^3} + 4\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$

(A)
$$y = (c_1 + c_2 x + c_3 x^2) e^{\frac{x}{2}}$$
 (B) $y = (c_1 + c_2 x) e^{\frac{x}{2}} + c_3$

(B)
$$y = (c_1 + c_2 x)e^{\frac{x}{2}} + c_3$$

(C)
$$y = (c_1 + c_2 x + c_3 x^2) e^{\frac{-x}{2}}$$
 (D) $y = (c_1 + c_2 x) e^{\frac{-x}{2}} + c_3$

(D)
$$y = (c_1 + c_2 x)e^{-\frac{x}{2}} + c_3$$

- g. Particular Integral (P.I.) of the differential equation $(D^2 + 3D + 2)y = 5$ is equal
 - (A) $\frac{2}{5}$

(B) $\frac{1}{5}$

 (\mathbf{C}) 0

- **(D)** $\frac{5}{2}$
- h. $\beta(m+1,n)+\beta(m,n+1)$ is equal to
 - (A) β (m + 1, n + 1)

(B) β (m, n)

(C) $\beta (m-1, n-1)$

- (**D**) None of these
- i. $J_2(x)$ in terms of $J_1(x)$ and $J_0(x)$ is
 - (A) $J_1(x) + \frac{2}{x} J_0(x)$
- **(B)** $J_1(x) \frac{2}{x} J_0(x)$
- (C) $\frac{2}{x}J_1(x)+J_0(x)$
- **(D)** $\frac{2}{x}J_1(x)-J_0(x)$
- j. Legendre's polynomial $P_2(x) = \frac{1}{2}(Kx^2 1)$ where K is equal to
 - **(A)** 1

(B) 2

(C) 3

(D) 4

2

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. If Z is a homogeneous function of degree n in x and y, show that

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = n(n-1)z$$
(8)

b. Use method of differentiation under integral sign to show that

$$\int_{0}^{\infty} \frac{\tan^{-1} ax}{x(1+x^2)} dx = \frac{\pi}{2} \log(1+a), a \ge 0$$
(8)

- **Q.3** a. Change the order of integration and then evaluate $\int_{0}^{4a} \int_{y^2/4a}^{2\sqrt{ay}} dx dy$ (8)
 - b. Find the volume bounded by the xy-plane, the cylinder $x^2 + y^2 = 1$ and the plane x+y+z=3. (8)
- Q.4 a. Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ (8)
 - b. Determine the rank of the following matrices:

(i)
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$$
 (8)

- Q.5 a. Use Regula-Falsi method to compute real root of xe^x = 2 correct to three decimal places.
 (8)
 - b. Find by Runge-Kutta method of order four, an approximate value of y at x = 0.2 for the equation $\frac{dy}{dx} = \frac{y x}{y + x}$, y(0) = 1. Take h = 0.2. (8)
- **Q.6** a. Solve the differential equation $(x+1)\frac{dy}{dx} + 1 = 2e^{-y}$ (8)

Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS - I

b. Find the orthogonal trajectories of family of curves $ay^2 = x^3$ (8)

Q.7 a. Solve the differential equation
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 25y = e^{2x} + x + Sinx$$
 (8)

b. Solve the equation
$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} = 12\frac{\log x}{x^2}$$
 (8)

Q.8 a. Obtain the series solution of
$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = 0$$
 (8)

b. Show that
$$\beta(m,n) = \frac{\overline{|m|n}}{\overline{|m+n|}}$$
 (8)

Q.9 a. State and prove Rodrigue's formula. (8)

b. Prove that
$$J_{n+1}(n) + J_{n-1}(n) = \frac{2n}{x} J_n(n)$$
 (8)