AMIETE - CS

Time: 3 Hours

DECEMBER 2013

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE OUESTION PAPER.

NOTE: There are 9 Ouestions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- 0.1 Choose the correct or the best alternative in the following:

 (2×10)

a. If $S = \{11\}$, then S^+ is:

(A)
$$S = \{11, 1111, 1111111, \dots \}$$

(B)
$$S = \{ \land, 11, 1111, ... \}$$

(C)
$$S = \{1, 111, 1111, \dots \}$$

(D)
$$S = \{11, 111, 1111, ...\}$$

b. Which of the following productions are regular:

(A)
$$S \rightarrow Aa \mid Sab$$

(B)
$$S \rightarrow aS \mid b$$

(C)
$$S \rightarrow bAa \mid Sa$$

(D)
$$S \rightarrow bAa \mid bS$$

c. The language generated by the production set $P = \{S \rightarrow aSb \mid ab\}$ is:

(A)
$$L = \{a^n b^n \mid n \ge 0\}$$

(B)
$$L = \{a^n b^{n+1} \mid n \ge 0\}$$

(C)
$$L = \{a^n b^n \mid n \ge 1\}$$

(B)
$$L = \{a^n b^{n+1} \mid n \ge 0\}$$

(D) $L = \{a^{n+1} b^n \mid n \ge 0\}$

d. According to Arden's theorem if P, Q and R are regular expressions then the solution of the equation R = Q + R.P is given by:

$$(\mathbf{A}) \mathbf{R} = \mathbf{PQ}^*$$

(B)
$$R = PO^{+}$$

(C)
$$R = P^*Q^*$$

(D)
$$R = QP^*$$

e. Which one of the following is *not* a regular expression:

(A)
$$[(0+1)^* + (0a+1b)^*]$$

(B)
$$[(0+1)^* + (0a^* + b)]$$

(C)
$$[(0+1)^* - (0a+1b)^*]$$

(D)
$$[(01)^* + (0a^* + 1b)^*]$$

f. The complement of a regular set is:

(A) Not regular

(B) Regular

(C) Context free

(**D**) Context sensitive

g. If a non-deterministic automata has 3 states, then it's equivalent DFA will have states:

(A) 3

(B) 6

(C) 9

(D) 8

Code: AC68 Subject: FINITE AUTOMATA & FORMULA LANGUAGES

h. Which of the following is *true* for recursively enumerable (RE) and recursive language (RL)

$$(A) RE \subseteq RL$$

(B)
$$RL \subset RE$$

(D)
$$RL = RE$$

i. The halting problem of a Turing machine is:

j. Which of the following grammar is said to be ambiguous?

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Prove by mathematical induction $n^4 - 4n^2$ is divisible by 3 for $n \ge 0$. (8)

(8)

b. What is the need to study Automata Theory in computer science?

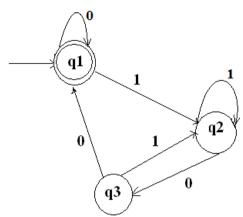
(10)

Q.3	a.	Minimize the following DFA	having state q_5 as final state:
-----	----	----------------------------	------------------------------------

Present	Next State	
State	Input 0	Input 1
q_0	q_1	q_2
q_1	q_3	q_4
q_2	q_5	q_6
q_3	q_3	q_4
q_4	q_5	q_6
q_5	q_3	q_4
q_6	q_5	q_6

b. Design a finite automata for the language $L = \{w | w \text{ is of even length and } w \in (a, b)^*\}$.

Q.4 a. Let
$$V_N = \{S, B\}$$
, $V_T = \{a, b\}$, $P = \{S \rightarrow aBa, B \rightarrow aBa, B \rightarrow b\}$.
Find the language L(G) generated by the given grammar. (8)


b. Obtain the NFA without epsilon transition corresponding to the following regular expression:

$$0^*1(0+10^*1)^*$$
 (8)

Q.5 a. Construct a regular expression corresponding to the state diagram given below

(8)

Code: AC68 Subject: FINITE AUTOMATA & FORMULA LANGUAGES

b. Consider the following productions representing regular grammar G,

$$S \rightarrow aA \mid a$$

$$A \rightarrow aA \mid aB \mid a$$

$$B \rightarrow bB \mid c$$

Find the regular expression corresponding to regular grammar G. (8)

- Q.6 a. Construct a PDA to accept strings containing equal number of 0's and 1's by null store. Show the moves of the PDA for the input string '011001'. (10)
 - b. What is ambiguity? Show that $S \rightarrow aS \mid Sa \mid a$ is an ambiguous grammar. (6)
- **Q.7** a. What are applications of pumping lemma in Chomsky's normal form? Convert the given grammar into Chomsky's Nf.

$$S \rightarrow ASB, A \rightarrow aAS \mid a, B \rightarrow SbS \mid bB$$
 (8)

b. Find a reduced grammar equivalent to $G = (V_N, \Sigma, P, S)$ where set P is given as follows:

$$S \rightarrow AB, A \rightarrow a, B \rightarrow b \mid C, D \rightarrow c$$
 (8)

- **Q.8** a. Design a Turing machine that recognizes all strings of even length over $\Sigma = (a, b)^*$ (8)
 - b. Write short note on universal Turing machine. (8)
- **Q.9** a. Prove that if a language L and it's complement L' are both recursively enumerable, then L is recursive. (8)
 - b. Define Post corresponding Problem (PCP). Check whether the following instance has no solution over $\Sigma = \{0, 1\}$. X and Y be the lists of the three strings as follows:

	List A	List B
i	Wi	Xi
1	1	111
2	10111	10
3	10	0