ROLL NO.

Code: AE53/AC53/AT53

Subject: ELECTRONIC DEVICES & CIRCUITS

EMITTER

AMIETE – ET/CS/IT

Time: 3 Hours

DECEMBER 2012

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1Choose the correct or the best alternative in the following: (2×10)

a. The impedance at the resonant frequency of a series RLC circuit with L = 20 mH, C = 0.02 F and R = 90 ohm is _____

(A) 0	(B) 90 Ohm
(C) 20 K Ohm	(D) 40 K Ohm

- b. The Power Amplifier which will give minimum distortion is _____
- (A) Class A
 (B) Class AB
 (C) Class C
 (D) Class D
- (A) BJT
 - (B) JFET(C) UJT
 - (D) CMOS
- d. The amplifier which have the largest bandwidth is _____
- (A) single stage amplifier
 (B) two stage amplifier
 (D) multistage amplifier
 e. The factor which almost doubles for every 10⁰ rise in temperature is
- (A) base to emitter voltage (B) reverse saturation current
 - (C) collector to emitter voltage (D) β
- f. Thevenin's theorem cannot be applied to _____
 - (A) Circuits consisting of linear components
 - (B) Circuits consisting of nonlinear components
 - (C) Resistive networks
 - (D) AC networks

BASE 2

Fig.1

ROLL NO.

Code: AE53/AC53/AT53 Subject: ELECTRONIC DEVICES & CIRCUITS

g. The device which exhibits negative resistance region is ____

(A) Zener diode(C) FET

i.

(B) BJT(D) Tunnel diode

h. The amplifiers input impedance increases and output impedance decreases with the application of ______

(A) Voltage Series Feedback(C) Current Series Feedback	(B) Voltage Shunt Feedback(D) Current Shunt Feedback
The main advantage of Darlingto	n Transistor Pair is

(A) Large voltage amplification	(B) Large current amplification
(C) Very low input impedance	(D) Very high output impedance

j. In IC fabrication, silicon dioxide is used as _____

(A) diffusing element(B) mask against diffusion(C) contact material(D) photo resistive material

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Explain Miller's theorem with the help of diagram. Give its applications. (8)
 - b. For the circuit shown in Fig.2, find out the voltage across R_L and current through R_L using Thevenin's Theorem. (8)

- Q.3 a. Explain in detail the switching characteristics of a diode.
 - b. The Zener diode in the circuit of Fig.3 is specified to have V_Z=6.8V at I_Z=5 mA, R_Z= 20 Ohm. The supply voltage(V_S) is 10V and soure resistance is 0.5KΩ. Find
 (i) V_O at no load
 (ii) Find the change in V_O resulting from connecting a load resistance R_L of 2 K Ohm.

(8)

- Q.4 a. What are the different BJT operating mode? Explain all the operating modes along with their area of applications. (10)
 - b. A depletion mode FET has saturation drain current of 3mA when $V_{GS} = 0$.If the pinch off voltage is -4.25 V, find drain current for $V_{GS} = -2.5$ V (6)
- Q.5 a. Explain briefly which parameters support the fact that a CB has a low input resistance and a CE high value of input resistance. (6)
 - b. Determine the bias resistors R_b for fixed bias circuit and collector to base bias circuit shown in Fig.4, and compare stability factor S for the two circuits. Given $V_{CC}=12$ V, $R_C=330$ Ohms, $I_B=0.3$ mA, $\beta=100$, $V_{CE}=6$ V. (10)

- Q.6 a. Explain the significance of Gain Bandwidth Product in amplifiers. (8)
 - b. Explain multistage amplifiers and discuss their merits and demerits. (8)
- Q.7 a. Give the classification of Power Amplifiers and explain why these are also called as Large Signal Amplifiers. (8)
 - b. Derive an equation for the efficiency of series-fed class-A Power Amplifier along with its circuit diagram and waveforms. (8)

Code: AE53/AC53/AT53 Subject: ELECTRONIC DEVICES & CIRCUITS

- Q.8 a. What is a feedback? Derive generalised formula for feedback and also discuss different types of feedback. (8)
 - b. What factors decide the frequency of Unijuction Oscillator and explain its operation in detail. (8)
- Q.9 a. Explain the fabrication of NMOS Enhancement Transistor with the help of neat diagrams. (8)
 - b. Briefly discuss the characteristics of IC components. (8)