ROLL NO. _

Code: AE75 Subject: OPTOELECTRONICS AND COMMUNICATION

AMIETE – ET

Time: 3 Hours		ER 2012	Max. Marks: 100
PLEASE WRITE YOU IMMEDIATELY AFTE			OVIDED ON EACH PAGE APER.
the space providedThe answer sheet fo the commencement	Ilsory and carries 2 for it in the answer r the Q.1 will be co of the examination. g EIGHT Questions	book supplied a llected by the in answer any FI	vigilator after 45 minutes of VE Questions. Each question
Q.1 Choose the cor	rect or the best alter	native in the fol	lowing: (2×10)
a. An eye diagra	am is		
(A) a multiple(C) a point to	exing technique point link	(B) method to (D) an optical	study and analyse a signal source
b. Dispersion me	ans		
(A) Broadeni(C) A channe	•	(B) Attenuation (D) Fiber fabr	-
c. Multiplexing	is		
(B) Increasin			unsmitted simultaneously
d. CDMA is			
	ivision multiple acces ersion multiple acces		
e. A photodetec	tor		
(A) converts(C) lights up	light to electrical fror a system	(B) converts(D) sends lig	electrical energy to light ht in a fiber
f. Splicing is			
(A) Breaking(C) Bending		(B) joining tw (D) Fabricatin	o fibers smoothly ng a fiber

Code: AE75 Subject: OPTOELECTRONICS AND COMMUNICATION

a	LASER	stands	for
g.	LASER	stanus	101

(A) Light amplification by stimulated emission of radiation

- (B) Light amplification by spontaneous emission of radiation
- (C) Light attenuation by stimulated emission of radiation
- (D) Light attenuation by spontaneous emission of radiation

h. Intermodal dispersion occurs in _____

- (A) Single mode fiber(B) Multimode fiber(C) A channel(D) A receiver
- i. DWDM is
 - (A) Density Wave Division Multiplexing
 (B) Dense & Wide Division Multiplexing
 (C) Dry Wavelength Division Multiplexing
 - (D) Dense Wavelength Division Multiplexing
- j. LED generally used material is

(A) Direct band gap material	(B) Indirect band gap material
(C) Both (A) and (B)	(D) None of these

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	What is Snell's law? Show the refraction and reflection of a light ray at a material boundary and explain what is critical angle of incidence. (6)	
	b.	Compare step index fiber and graded index fiber.	
	c.	 A silica optical fiber with a core diameter large enough to be considered by theory analysis has a core refractive index of 1.5 and a cladding refractive of 1.47. Determine (i) The critical angle at core cladding interface. (ii) The numerical aperture for the fiber. (iii) The acceptance angle in air for the fiber. 	• •
Q.3	a.	Explain signal distortion in single-mode optical fiber.	(6)
	b.	Derive an expression for waveguide dispersion.	(5)
	c.	Explain how information capacity of optical fiber is determined.	(5)
Q.4	a.	Compare LED and LASER as a source of light. What is population inversion	on? (8)

ROLL NO.

Code: AE75 Subject: OPTOELECTRONICS AND COMMUNICATION

	b.	Draw the schematic representation of a reverse biased PIN-photodiod	le and
		derive expression for primary photo current I _p .	(8)
Q.5	a.	With neat sketch, explain lensing-schemes used to improve optical sour	rce-to-
		fiber coupling efficiency.	(8)
	h	Show that the axial misalignment of 'd' is small compared with the core	radius
	υ.	'a'.	(8)
			(-)
Q.6	a.	Briefly explain the optical digital receivers performance.	(8)
	1.	Charry the bit among acts as a function of signal to gains action when the stand	and
	D.	Show the bit-error rate as a function of signal to noise ratio when the stand deviations are equal ($\sigma_{on} = \sigma_{off}$) and $b_{off} = 0$.	(8)
		deviations are equal $(O_{on} - O_{off})$ and $O_{off} - O$.	(0)
Q.7	a.	Describe basic elements of an analog-link and the major noise contributors	.(8)
L.			
	b.	Explain various multichannel transmission techniques.	(8)
Q.8	0	Why is line coding an important consideration within digital optical	fibor
Q.0	а.	system design?	(8)
			(0)
	b.	What are Block codes?	(8)
0.0			
Q.9		Write short notes of any <u>TWO</u> :-	
		(i) Ultra-high capacity networks	
		(ii) Scattering Matrix Representation	
		(iii) Star couplers (2	2×8)

3