ROLL NO. _____

Code: DE58/DC58/DE108/DC108

Subject: LOGIC DESIGN

DiplETE – ET/CS (Current & New Scheme)						
Time: 3 Hours	DECEMBER 2015	Max. Marks: 100				
 PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER. NOTE: There are 9 Questions in all. Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in 						
 the space provided for it in the answer book supplied and nowhere else. The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination. Out of the remaining EIGHT Questions answer any FIVE Questions. Each 						
question carries 16 marks.						
• Any required data not explicitly given, may be suitably assumed and stated. O_1 Choose the correct or the best alternative in the following: (2 × 10)						
a. The number of bi	a. The number of bits in ASCII code is (2×1)					
(A) 12 (C) 10	(B) 9 (D) 7					
b. The 8421 BCD ea (A) 0000 0101 01 (C) 1111 0101 01	quivalent of Hexadecimal number F101(B) 0010 0101 (101(D) 1000 0101 (F ₁₆ is 0101 0101				
c. DeMorgan's seco	ond theorem is					
(A) $A\overline{A} = 0$	$(\mathbf{B}) = -\mathbf{A}$					
$(\mathbf{R}) \ \overline{\mathbf{A} + \mathbf{B}} = \overline{\mathbf{A}} \ \overline{\mathbf{B}}$	(D) $\overrightarrow{AB} = \overrightarrow{A} \cdot \overrightarrow{B}$					
d A Karnaugh man with 4 variables has						
(A) 2 cells	(B) 8 cells					
(C) 4 cells	(D) 16 cell					
e. In a D latch						
(A) data bit D is f	(A) data bit D is fed to S input and \overline{D} to R input					
(B) data bit D is f	(B) data bit D is fed to R input and \overline{D} to S input					
(C) data bit D is f	(C) data bit D is fed to R and S inputs					
(D) data bit D is						
f. When two 4-bit p (A) 4-bit parallel (C) 16-bit paralle	adder (B) 8-bit parallel el adder (D) 32-bit paralle	l adder lel adder				
g. A 4-bit down cou						
(A) 0000 to 1111	1 (B) 1111 to 000	0				
(C) 0101 to 1111						
h. In a 7 segment display, LEDs a,b and c light up. The decimal number displayed						
$\frac{18}{(\mathbf{A})9}$	(B) 3					
(C) 7	(D) 1					

1

Code:	DE5	8/DC58/DE108/DC108	Subject: LOG	IC DESIGN
	i.	An 8 bit data is to be entered into a pa pulses require is (A) 8	arallel in register. The number of cloc (B) 2	k
	j.	(C) 4The memory does not require program(A) RAM(C) EPROM	 (B) I mming equipment is (B) EEPROM (D) UVPROM 	
		Answer any FIVE Questions of Fach question card	out of EIGHT Questions.	
Q.	2 a.	What is a Digital System? Explain Techniques over Analog Techniques	the advantages and limitations of D s.	igital (8)
	b.	Convert the decimal number 82.67 to	o its equivalent binary number.	(4)
	c.	Explain the five functional units of a	a computer.	(4)
Q.	3 a.	Simplify the logic expression $F = \overline{A}$ boolean algebraic theorems.	$\overline{BC} + \overline{AB} C + \overline{A} B \overline{C} + A \overline{BC} + A \overline{B} C u$	using (6)
	b.	Draw the logic diagram for 4-bit operation.	Even Parity Generator and explain	n its (4)
	c.	Minimize the logic function F(A, B, using K-maps.	$(C, D) = \sum m(1,3,5,8,9,11,15) + d(2,1)$	3) (6)
Q.	4 a.	What is a Flip-Flop? Draw the logi explain its function with the help of	c diagram for Master Slave Flip-Floj truth table.	o and (8)
	b.	Explain the application of Flip-Flop	as a Shift Register using D Flip-Flops	s. (8)
Q	.5 a.	(i) Perform the Addition of -20 to +(ii) Perform the Subtraction of 001 System.	-26 using 2's complement System. 1.1001- 0001.1110 using 2's Comple	(4) ement (4)
	b.	What is the need of Parallel Binary A Parallel Adder using Full Adders an	Adder? Draw the block diagram of for description description description.	ur-bit (8)
Q.	6 a.	What is a Ripple Counter? Draw the explain its working with the help of	logic diagram of 3-bit Ripple Counte timing diagram.	r and (8)
	b.	What is Synchronous Counter? Draw Counter and explain its working with	w the logic circuit of MOD 8 Synchron h timing waveform.	10US (8)
Q.	7 a.	What is Magnitude Comparator? E the help of truth table.	Explain 2-bit Magnitude Comparator	with (9)
	b.	What is an Encoder? Draw the truth Encoder and implement the logic dia	h table for 10-line Decimal to 4-line agram from the truth table.	BCD (7)
Q.	8 a.	Design a MOD-6 Synchronous Cour	nter and draw its designed logic diagra	am.(9)
	b.	Draw the logic diagram for 4-bit Se and explain its working with timing	rial Input and Serial Output Shift Reawaveform.	gister (7)
Q.	9 a.	Draw and explain the architecture of Differentiate between Static RAM a	16 X 8 ROM.	(10)

ifferentiate between Static RAM and Dynamic RAM. (6)