ROLL NO. _____

Code: DE57

Subject: NETWORKS & TRANSMISSION LINES

DiplETE – ET (Current Scheme)

Time: 3 Hours

DECEMBER 2015

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The energy stored in a capacitor is

$(\mathbf{A}) \mathbf{E} = \mathbf{CV}^2$	$(\mathbf{B}) \mathbf{E} = 2\mathbf{CV}^2$
$(\mathbf{C}) \mathbf{E} = \frac{1}{2} \mathbf{C} \mathbf{V}^2$	$(\mathbf{D}) \mathbf{E} = \frac{1}{2} \mathbf{C} \mathbf{V}$
. The Inverse Laplace Transform	of $\frac{1}{1}$ is

b. The Inverse Laplace Transform of $\frac{1}{s+3}$ is

(A)
$$3e^t$$
 (B) $3e^{t/3}$
(C) e^{3t} (D) e^{-3t}

c. A Two-port network is said to be reciprocal, if and only if

$(A) \ Z_{11} = Z_{22}$	$(\mathbf{B}) \mathbf{A} = \mathbf{D}$
$(\mathbf{C}) \ \mathbf{B}\mathbf{C} - \mathbf{A}\mathbf{D} = -1$	(D) $h_{12} = h_{21}$

d. For the symmetrical two-port network $Z_1 = 30\Omega$ and $Z_2 = 10\Omega$, then the values of A and D

(A) A=4 D=4	(B) A=4 D=1/4
(C) A=1/4 D=1/4	(D) A=1/4 D=4

e. The cut-off frequency of a constant-K LPF is

(A) $f_C = \pi \sqrt{LC}$	$(\mathbf{B}) \ f_C = 4\pi\sqrt{LC}$
$(\mathbf{C}) f_C = \frac{1}{\pi \sqrt{LC}}$	$(\mathbf{D}) \ f_C = \frac{1}{4\pi\sqrt{LC}}$

f. The value of 'm' for LPF having $R_0=600\Omega$, $f_c=1800$ Hz, $f_{\infty}=2000$ Hz is

(A) 0.43	(B) 0.62
(C) 0.81	(D) 0.25

g. Which of the following is the characteristic Impedance of a lossless transmission line?

- h. A Quarter wave Impedance transformer is terminated by a short circuit. The Input Impedance is equal to
 - (A) The line characteristic Impedance

(**B**) Zero

(C) Infinity

(D) Square root of the line characteristic Impedance

i. A Series RLC circuit resonates at 3MHz and has a 3dB bandwidth of 10kHz. The Q of the circuit at resonance is

(A) 30	(B) 300
(C) $300\sqrt{2}$	(D) $\frac{300}{\sqrt{2}}$

j. When VSWR is 3, reflection coefficient is

(A) 1/2	(B) 1
(C) 3/2	(D) 1/4

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. (i) What is duality in electrical networks? Explain the steps involved in construction of a dual of a network.
(ii) Draw the dual of the network shown in Fig.1. (6+2)

- b. Explain the Dot convention rules in magnetically coupled coils. (8)
- Q.3 a Find the Laplace Transform of the following signals: (i) $f(t) = \cos \omega t$ (ii) f(t) = U(t-3)(6+2)
 - b. Find the Initial and Final values for the following: (4+4) $X(s) = \frac{s+4}{2}$

$$X(s) = \frac{3+4}{s^2 + 3s + 5}$$

(8)

(8)

(8)

Code: DE57

Subject: NETWORKS & TRANSMISSION LINES

Q.4 a. Find the Power dissipated in 10Ω resistor in the circuit shown in Fig.2 using Norton's Theorem.

b. Using Milliman's theorem, find out the voltage across the load resistance for the circuit shown in Fig.3.

- **Q.5** a. The Z-Parameters of a two-port network are $Z_{11}=30\Omega$, $Z_{22}=40\Omega$, $Z_{12}=Z_{21}=20\Omega$. Find the equivalent T-network. (8)
 - b. The Impedance parameters of a two-port network are $Z_{11}=6\Omega$, $Z_{22}=4\Omega$, $Z_{12}=Z_{21}=3\Omega$. Compute the Y-Parameters and write the equations. (8)

Q.6 a. Define Selectivity and Bandwidth of R-L-C circuit.

b A resistor and a capacitor are in series with a variable Inductor. When the circuit is connected to a 200V, 50Hz supply, the maximum current obtainable by varying the Inductance is 0.314A, the voltage across the capacitor is then 300V. Find the circuit elements.

Q.7 a. Explain how
$$\frac{R}{L} = \frac{G}{C}$$
 is a distortionless condition of a transmission line. (8)

- b. Derive the expressions for Attenuation Constant(α) and Phase constant (β) of a transmission line in terms of R, L, C and G.
 (8)
- Q.8 a. Explain the Phenomenon of Standing Wave ratio (SWR) and derive the relationship between SWR and Reflection Coefficient. (2+6)
 - b. A certian lossless line has a characteristic impedance of 400 Ω . Determine the SWR with the following receiving end Impedance. (4+4) (i) $Z_R = 70 + j0\Omega$

(ii)
$$Z_{R} = 450 + j50\Omega$$

- Q.9 a. Define Decibel and Neper? Derive the numerical relationship between the Decibel and Neper. (2+2+4)
 - b. Design a Constant-K Low pass filter to have a cut-off frequency of 2 kHz and terminating impedance of 600Ω . Design for both T and π sections. (8)

3