ROLL NO. __

Code: DE56/DE106

Subject: ANALOG ELECTRONICS

DiplETE – ET (Current & New Scheme)

Time: 3 Hours

DECEMBER 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Q2 TO Q8 CAN BE ATTEMPTED BY BOTH CURRENT AND NEW SCHEME STUDENTS.
- Q9 HAVE BEEN GIVEN INTERNAL OPTIONS FOR CURRENT SCHEME (CODE DE56) AND NEW SCHEME (CODE DE106) STUDENTS.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. The maximum collector efficiency of transformer coupled class-A power amplifier is _____

(A) 25%	(B) 78.5%
(C) 50%	(D) 90%

b. The typical value of input impedance for JFET is ______

(A) 10Ω	(B) 100Ω
(C) 10 MΩ	(D) 100 MΩ

c. Which of the following BJT configuration has highest input resistance?

(A) CC	(B) CE
(C) CB	(D) CE-CC

d. Full scale output of an 8-bit DAC for the 0 to 10 V range is _____

(A) 8.86 V	(B) 9.86 V
(C) 8 V	(D) 9.961 V

e. The duty cycle for 555 astable multivibrator output for C= 0.01 μ F, R_A=2 K Ω & R_B= 100 K Ω is _____

(A) 56.5%	(B) 54.5%
(C) 49.5%	(D) 50.5%

ROLL NO.

Code: DE56/DE106

Subject: ANALOG ELECTRONICS

f. The resistivity of N-type epitaxial collector region is in the range of _____

(A) 0.1 to 0.5 K Ω /cm ² (C) 0.7 to 0.12 K Ω /cm ² g. The categorization of series reg	(B) 0.4 to 0.9 K Ω /cm ² (D) 1 to 10 K Ω /cm ² gulator is
(A) Inverting(C) Linear	(B) Switching(D) Non-inverting
h. The typical values of forwar LED's display are	rd voltage and forward current respectively for
(A) 1.2 V, 20 mA (C) 2.5 V, 20 mA	(B) 1.6 V, 20 mA (D) 2.5 V, 100 mA
i. Power supply rejection ratio of	f an op-amp should be
(A) ideally zero(C) as small as possible	(B) as large as possible(D) none of these
j. The ideal value of CMRR is _	
(A) 1 (C) ∞	(B) 0 (D) -∞

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	With the help of neat diagrams, explain briefly the basic planar process use fabricate ICs.	ed to (12)
	b.	Write a short note on thick film technology.	(4)
Q.3	a.	Draw the ac equivalent circuit for common-emitter transistor amplifier coupling and bypass capacitors and explain the elements used in it.	with (8)
	b.	Compare the characteristics for CC, CE & CB circuit with diagram.	(8)
Q.4	a.	Draw typical drain and transfer characteristics for a P-channel JFET explain.	and (8)
	b.	Draw a neat sketch to illustrate the structure of a N-channel E-MOSFET explain its operation.	and (8)
Q.5	a.	Explain the working of transformer coupled class-A power amplifier derive an expression for its collector efficiency.	and (9)
	b.	Explain the working of opto-coupler with the help of a diagram and giv applications.	e its (7)

ROLL NO. _

Code: DE56/DE106

Subject: ANALOG ELECTRONICS

Q.6	a.	Explain the differential amplifier with the help of suitable diagram.	(8)
	b.	Discuss the characteristics of an ideal operational amplifier.	(8)
Q.7	a.	What is the input impedance of a non-inverting operational amplifier?	(4)
	b.	Explain why CMRR approaches infinity for an emitter coupled different amplifier when R_E approaches to infinity.	ntial (4)
	c.	Draw the circuit of Integrator using Op-Amp and derive an expression fo output voltage.	r its (8)
Q.8	a.	Draw the circuit diagram of Triangular Wave Generator & derive expression for frequency of oscillation.	an (8)
	b.	Explain how the timer IC 555 can be operated as an astable multivibra using timing diagrams.	ator, (8)
Q.9	(F	or Current Scheme students i.e. DE56)	
	a.	Write the limitations of three terminal voltage regulators & explain the general purpose voltage regulators with diagram.	723 (8)
	b.	Write a short note on complementary emitter follower circuit.	(4)
	c.	Explain monolithic power amplifiers.	(4)
Q.9	(F	or New Scheme students i.e. DE106)	
	a.	Explain the concept of FET switching.	(4)
	b.	Write a short note on photo-diodes with applications.	(4)
	c.	Draw the functional diagram of Counter Type ADC & explain its operation	
			(8)