ROLL NO.

Code: DE51/DC51/DE101/DC101

Subject: ENGINEERING MATHEMATICS - I

DiplETE – ET/CS (Current & New Scheme)

Time: 3 Hours

DECEMBER 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10) a. The value of $\underset{x \to 0}{\text{Limit}} \frac{x^2 \sin \frac{1}{x}}{\sin x}$ is **(A)** 1 **(B)** 0 (C) $\frac{1}{2}$ (D) None of these b. If $y = x^2 - \cos x - \frac{1}{x^2}$, then $\frac{dy}{dx}$ is, (A) $x - \cos x + \frac{2}{r^3}$ **(B)** $2x - \sin x + \frac{2}{x^3}$ **(D)** $2x + \sin x + \frac{2}{r^3}$ (C) $2x + \sin x - \frac{2}{r^3}$ c. $\int \left(\frac{1}{\cos^2 x} + \frac{\cot x}{\sin x}\right) dx$ is (A) $\cot x + \sec x$ (B) $\tan x - \cos ecx$ (C) $\tan x - \cos ecx$ (**D**) $\cot x - \sec x$ d. Let A and B be two matrices, then the relation $(AB)^n = A^n B^n$ if **(B)** $AB \neq BA$ (A) AB = BA**(D)** $A^{-1} = B$ (C) A = Be. The equation of a circle which passes through the intersection of the lines 3x - 2y = 1 and 4x + y = 27And the centre is at point (2,-3) is (A) $(x+2)^2 + (y-3)^2 = 100$ (B) $(x-2)^2 + (y+3)^2 = 100$ **(D)** $(x+2)^2 + (y-3)^2 = 109$ (C) $(x-2)^2 + (y+3)^2 = 109$

1

Code: DE51/DC51/DE101/DC101 Subject: ENGINEERING MATHEMATICS - I

f. The order (O) and degree (D) of differential equation $\frac{d^2y}{dx^2} = 1 + \sqrt{\frac{dy}{dx}}$ is,

(A) O = 1, D = 2(C) O = 2, D = 1(B) O = 2, D = 2(D) O = 3, D = 1

g. The middle term in the expansion of
$$\left(x - \frac{1}{x}\right)^{10}$$
 is

h. The value of $\sin 10^{\circ} \cdot \sin 50^{\circ} \cdot \sin 70^{\circ}$ is

(A)
$$\frac{1}{8}$$
 (B) $\frac{-1}{8}$
(C) $\frac{3}{8}$ (D) $\frac{-3}{8}$

i. The differential coefficient of cos (sin x) is

$(\mathbf{A}) \sin^2 x (\cos x)$	$(\mathbf{B}) - \cos(\sin x)$
(C) $-\sin(\sin x) \cdot \cos x$	(D) $\cos^2(\sin x)$

j. The area of a triangle whose vertices are (3,5), (5,3), (7,7) is,

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
, then prove that $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$ (8)

b. Find the point on the curve $y = 7x - 3x^2$, where the inclination of the tangent with x-axis is of 45°. Also find the equation of the normal to the given curve at that point. (8)

Q.3 a. Evaluate
$$\int x \cos^3 x dx$$
 (8)

b. Evaluate
$$\int_{0}^{\pi/2} x^2 \cos^2 x dx$$
 (8)

ROLL NO.

(8)

Code: DE51/DC51/DE101/DC101

Subject: ENGINEERING MATHEMATICS - I

Q.4 a. Solve
$$\cos(x+y)dy = dx$$
 (8)

b. Solve
$$\frac{dy}{dx} + y \cdot \sec x = \tan x$$
 (8)

Q.5 a. Find the term independent of x in the expansion of $\left(2x^2 - \frac{1}{x}\right)^{12}$ (8)

b. The sum of first three terms of a G.P. is 16 and the sum of the next three term is 128. Find the sum of 1^{st} n terms (S_n) of G.P. (8)

Q.6 a. Prove that,
$$\cos 2A \cdot \cos 2B + \sin^2(A-B) - \sin^2(A+B) = \cos(2A+2B)$$
 (8)

b. The sides of a triangle are $x^2 + x + 1, 2x + 1$ and $x^2 - 1$. Find the greatest angle.

Q.7 a. Find the equation of the circle which passes through the points
$$(3,-2),(-2,0)$$
 and having its centre on the line $2x - y = 3$. (8)

b. Find the vertex, focus, directrix, axis and latus-rectum of the parabola of $y^2 = 4x + 4y$ (8)

Q.8 a. If p be the length of perpendicular from the origin to the line whose intercepts on the axes are a and b respectively, then show that $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$ (8)

b. Find the equation of the straight lines through the point (2,-1) and making an angle of 45° with the line 6x+5y-1=0 (8)

Q.9 a. If
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, find A^{-1} and show that $A^{-1} = A^2$ (8)

b. If
$$\begin{bmatrix} a & a^2 & a^3 - 1 \\ b & b^2 & b^3 - 1 \\ c & c^2 & c^3 - 1 \end{bmatrix} = 0$$
. Prove that $abc = 1$. (8)

3