ROLL NO. \_\_\_\_\_

Code: DE107

Subject: NETWORKS & TRANSMISSION LINES

## Diplete – et {NEW SCHEME}

| Time: 3 Hours                                                                                                                                                                                                                                                                                                                                   | DECEMBI                                                                      | ER 2015                                       |                 | Max. Marks: 100 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|-----------------|-----------------|--|
| <ul> <li>PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.</li> <li>NOTE: There are 9 Questions in all.</li> <li>Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.</li> </ul> |                                                                              |                                               |                 |                 |  |
| <ul> <li>The answer sneet for the Q.1 will be conected by the invigilator after 45 minutes of the commencement of the examination.</li> <li>Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.</li> </ul>                                                                                          |                                                                              |                                               |                 |                 |  |
| • Any required data not e                                                                                                                                                                                                                                                                                                                       | explicitly given, may be<br>t or the best alternativ                         | e suitably assume                             | ed and stated.  | (2 × 10)        |  |
|                                                                                                                                                                                                                                                                                                                                                 | t of the best afternativ                                                     | e in the following                            | 5.              | (2 ~ 10)        |  |
| a. $\frac{1}{s+a}$ is the Lap                                                                                                                                                                                                                                                                                                                   | place transform of                                                           | ·····                                         |                 |                 |  |
| (A) $e^{at}$                                                                                                                                                                                                                                                                                                                                    |                                                                              | <b>(B)</b> $e^{-at}$                          |                 |                 |  |
| (C) $se^{at}$                                                                                                                                                                                                                                                                                                                                   |                                                                              | <b>(D)</b> $se^{-at}$                         |                 |                 |  |
| b. The reversal due to interchange of the dependent and independent variables is called $\overline{(A)}$ Thevenin's theorem (B) Norton's theorem                                                                                                                                                                                                |                                                                              |                                               |                 |                 |  |
| (C) Superposition                                                                                                                                                                                                                                                                                                                               | on theorem                                                                   | ( <b>D</b> ) Principle of                     | f duality       |                 |  |
| c. Condition for reciprocity in y- parameters is                                                                                                                                                                                                                                                                                                |                                                                              |                                               |                 |                 |  |
| (A) $Y_{21} = Y_{12}$                                                                                                                                                                                                                                                                                                                           |                                                                              | <b>(B)</b> $Y_{11} = Y_{22}$                  |                 |                 |  |
| (C) $Y_{11} = Y_{12}$                                                                                                                                                                                                                                                                                                                           |                                                                              | <b>(D)</b> $Y_{21} = Y_{22}$                  |                 |                 |  |
| d. A series RLC circuit draws current at leading power factor at                                                                                                                                                                                                                                                                                |                                                                              |                                               |                 |                 |  |
| (A) resonant free                                                                                                                                                                                                                                                                                                                               | quency                                                                       | ( <b>B</b> ) more than r                      | esonant frequer | псу             |  |
| (C) less than res                                                                                                                                                                                                                                                                                                                               | onant frequency                                                              | ( <b>D</b> ) none of the                      | se              |                 |  |
| e. In coaxial cables, radiation loss in comparison to open wire line is                                                                                                                                                                                                                                                                         |                                                                              |                                               |                 |                 |  |
| (A) lower                                                                                                                                                                                                                                                                                                                                       |                                                                              | (B) higher                                    |                 |                 |  |
| (C) same                                                                                                                                                                                                                                                                                                                                        |                                                                              | ( <b>D</b> ) none of the                      | se              |                 |  |
| f.A transmission li coefficient is                                                                                                                                                                                                                                                                                                              | ne is terminated by                                                          | its characteristic                            | impedance.      | The reflection  |  |
| (A) + 1                                                                                                                                                                                                                                                                                                                                         |                                                                              | ( <b>B</b> ) −1                               |                 |                 |  |
| (C) infinity                                                                                                                                                                                                                                                                                                                                    |                                                                              | (D) zero                                      |                 |                 |  |
| g. Characteristic                                                                                                                                                                                                                                                                                                                               | g. Characteristic impedance of transmission lines is given by the expression |                                               |                 |                 |  |
| $(\mathbf{A}) \ Z_0 = \frac{R+j}{G+j}$                                                                                                                                                                                                                                                                                                          | iwL<br>iwC                                                                   | $(\mathbf{B}) \ Z_0 = \sqrt{\frac{R+1}{G+1}}$ | - jwL<br>- jwC  |                 |  |
| (C) $Z_0 = \sqrt{(R + 1)^2}$                                                                                                                                                                                                                                                                                                                    | + jwL)(G + jwC)                                                              | <b>(D)</b> $Z_0 = (R + 1)$                    | jwL)(G + jwC)   | C)              |  |
|                                                                                                                                                                                                                                                                                                                                                 |                                                                              |                                               |                 |                 |  |

ROLL NO.

Code: DE107

h. Distortion less condition of a transmission line is given by the relation \_\_\_\_\_  $(\mathbf{A}) \ Z_0 = \sqrt{\frac{L}{C}}$ **(B)** RG = LC(C)  $\frac{R}{G} = \frac{L}{C}$ (D) All of these i. Attenuator always consist of \_\_\_\_\_ (B) inductors only (A) resistors only (C) capacitors only (**D**) All of these j. A passive filter which passes all low frequencies up to a cut off frequency and attenuates all high frequencies above the cut off frequency is called \_\_\_\_\_ (A) BPF (B) HPF (C) both BPF and HPF (**D**) LPF

## Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Write the advantages of Laplace transformation. Q.2 (4) a. b. Find the convolution integral when  $f_1(t) = e^{-t}$  and  $f_2(t) = e^{-2t}$ (4) c. Voltage  $V(s) = \frac{1 - 2e^{-s} + e^{-2s}}{s^2}$  is applied as input to a series RL circuit with R = $2\Omega$ , L = 2 H. Calculate i(t) using Laplace transform through the circuit. (Assume  $i(0^+) = 0$ ) (8) Q.3 State and prove maximum power transfer theorem. (8) a. b. A black box consisting of generators and impedances where only two output terminals are available gives the following data: (i) Open circuit voltage = 120 volts (ii) Short circuit current = 10 Amp(iii) When output terminals are connected to a resistance of  $8\Omega$ , current flowing = 6Amp., determine Thevenin's equivalent generator. (8)
- Q.4 a. What are h- parameters? Draw equivalent circuit using h-parameters and derive equation for calculating h-parameters. (8)
  - b. Find the equivalent  $\pi$ -network for the T-network shown in Fig.1. (8)



ROLL NO.

(3)

## Code: DE107

- **Q.5** a. Determine the relationship between the resonant frequency  $f_0$  and the half-power frequencies  $f_1$  and  $f_2$  in a series resonating circuit. (8)
  - b. A coil with resistance of 20 ohms and induction of 0.2 H is connected in parallel with a 100  $\mu$ F capacitor. Calculate the frequency at resonance ( $f_0$ ) and Q factor. (8)
- Q.6 a. Define and explain the term characteristic impedance and propagation constant of a transmission line. (8)
  - b. An open wire transmission line terminated in its characteristic impedance has the following primary constant at 1 KHz.  $R = 6 \Omega / \text{km}$ ; L = 2 mH / km;  $G = 0.5 \mu\Omega / \text{loop km}$  and  $C = 0.005 \mu\text{F} / \text{loop km}$ . Calculate (i) characteristic impedance (ii) phase velocity and (iii) the attenuation suffered by a signal in a length of 100 km. (8)
- **Q.7** a. Define VSWR for transmission line.
  - b. Open and short circuit of a transmission line at 1.6 kHz are  $900 \angle -30^{\circ}$  ohms and  $400 \angle -10^{\circ}$  ohms respectively. Calculate its characteristic impedance. (6)
  - c. Derive an expression for the input impedance of a lossless transmission line when line is terminated with any impedance  $Z_R$ . (7)
- Q.8 a. Describe double stub matching of a transmission line. What are the advantages of this method over single stub matching? (8)
  - b. A low loss transmission line has characteristic impedance of 70  $\Omega$  and is terminated by another impedance of  $(115 - j80) \Omega$ . Find (i) reflection co-efficient and (ii) standing wave ratio. (8)
- **Q.9** a. Draw T and  $\pi$  sections of a constant K high pass filter. Derive an expression for cutoff frequency. (4+4)
  - b. Design a symmetrical Bridged-T network with an attenuation of 40 dB and an impedance of 600 ohms. (8)