ROLL NO. ____

Code: DE105/DC105

Subject: ENGINEERING MATHEMATICS II

Diplete – Et/CS (New Scheme)

Time: 3 Hours

DECEMBER 2015

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
 - Q.1 Choose the correct or the best alternative in the following:

a.	$\lim_{x \to 0} \left\{ \frac{e^x + \sin x - 1}{\log(1 + x)} \right\}$ is equal to	
	(A) 0	(B)
	(C) –2	(D)

b. The value of $\int_0^{\pi/2} \sin^6 x \cos^3 x \, dx$ is equal to

(A)
$$\frac{5\pi}{4096}$$
 (B) $\frac{5\pi}{4069}$
(C) $\frac{5\pi}{6094}$ (D) $\frac{5\pi}{9064}$

c. If $Z_1 = 2 - 5i$, $Z_2 = -1 + 4i$, $Z_3 = 6 + i$ and $Z_4 = 3 - 7i$, then $\frac{(Z_1 + Z_2)Z_3}{Z_4}$ equals

 $\frac{2}{1/2}$

(A) $\frac{28}{29} - \frac{17}{29}i$	(B) $\frac{-28}{29} + \frac{17}{29}i$
(C) $\frac{-28}{29} - \frac{17}{29}i$	(D) $\frac{28}{29} + \frac{17}{29}i$

d. If \vec{a} and \vec{b} are two unit vectors inclined at an angle θ and are such that $\vec{a} + \vec{b}$ is a unit vector, then θ is equal to

(A) $\frac{\pi}{4}$	$(\mathbf{B}) \ \frac{\pi}{3}$
(C) $\frac{\pi}{2}$	$(\mathbf{D}) \ \frac{2\pi}{3}$
	1

e. Let $\vec{a} = (1,2,0), \ \vec{b} = (-3,2,0), \ \vec{c} = (2,3,4) \text{ then } \vec{a} \cdot (\vec{b} \times \vec{c}) \text{ equal}$ (A) 31 (B) 30 (C) 33 (D) 32

Code: DE105/DC105

- f. The solution of the differential equation $(D^2 + 4)y = e^x$ is (A) $C_1 \cos 2x - C_2 \sin 2x + \frac{e^x}{4}$ (B) $C_1 \cos 2x + C_2 \sin 2x + \frac{e^x}{4}$
 - (C) $C_1 \cos 2x + C_2 \sin 2x + \frac{e^x}{5}$ (D) $C_1 \cos 2x C_2 \sin 2x + \frac{e^x}{5}$
- g. The voltage and current of a circuit are given by the complex numbers 3+4j and 2-5j respectively. The complex number that will be the impedance of the circuit is
 - (A) $\frac{14}{29} + \frac{23}{29}j$ (B) (C) $\frac{-14}{29} - \frac{23}{29}j$ (D)
- h. The series $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots \infty$ is (A) Convergent (C) Oscillatory
- **(B)** $\frac{14}{29} \frac{23}{29}j$ **(D)** $\frac{-14}{29} + \frac{23}{29}j$
- (B) Divergent(D) None of these
- i. The Laplace transform of $4 \sin^3 t$ is

(A) $\frac{s}{s^2+1} - \frac{3}{s^2+9}$	(B) $\frac{3}{s^2+1} - \frac{3}{s^2+9}$
(C) $\frac{1}{s^2+1} + \frac{s}{s^2+9}$	$(\mathbf{D}) \ \frac{1}{s^2 + 1} + \frac{1}{s^2 + 9}$
j. $L^{-1}\left(\frac{1}{s(s^2+1)}\right)$ is (A) $1 + \cos t$	(B) 1-sint
(C) $1 - cost$	(D) $1 + sint$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Expand $\log_e x$ in powers of (x-1) and hence evaluate $\log_e 1.1$ correct to 4 places of decimal. (8)

b. Evaluate
$$lt_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$$
 (8)

- **Q.3** a. Evaluate by using reduction formula (8) $\int_{0}^{\pi/6} \cos^{4} 3\phi \sin^{2} 6\phi d\phi$
 - b. Find the area common to the parabola $y^2 = x$ and the circle $x^2 + y^2 = 2$. (8)
- Q.4 a. If *n* is positive integer, prove that

ROLL NO. __

Code: DE105/DC105

Subject: ENGINEERING MATHEMATICS II

$$\left(\sqrt{3}+i\right)^n + \left(\sqrt{3}-i\right)^n = 2^{n+1}\cos\frac{n\pi}{6}, \ (i=\sqrt{-1})$$
(8)

- b. Two impedances $Z_1 = 8 + j6$ ohms & $Z_2 = 6 j8$ ohms are connected in parallel across 200 volts, calculate the magnitude of current in each branch and the total current in the circuit. (8)
- Q.5 a. Forces of magnitude 5 and 3 units acting in the directions 6i+2j+3k and 3i-2j+6k respectively act on a particle which is displaced from the point (2,2,-1) to (4,3,1). Find the work done by the forces. (8)
 - b. Find the volume of the parallelepiped, if $\vec{a} = -3i + 7j 5k$, $\vec{b} = -3i + 7j - 3k$ and $\vec{c} = 7i - 5j - 3k$ are the three coterminous edges of the parallelepiped. (8)

Q.6 a. Solve
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = \sin 2x$$
 (8)

b. A Condenser of capacity C is discharged through the inductance L and a resistance R in series and the charge q at any time t satisfies the equation

$$L\frac{d^{2}q}{dt^{2}} + R\frac{dq}{dt} + \frac{q}{C} = 0$$

Given that $L = 0.25$ henry, $R = 250$ ohms, $C = 2 \times 10^{-6}$ farad and that when $t = 0$,
the charge q=0.002 coulombs, and the current $\frac{dq}{dt} = 0$, obtain the value of q in
terms of t. (8)

Q.7 Test for convergence the series given below: a. $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ (8)

b.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n+1}}$$
 (8)

Q.8 Find the Laplace transform of
$$f(t)$$
 where
a. $f(t) = 2 \sin 2t \cos 4t$

b.
$$f(t) = \frac{e^{at} - \cos bt}{t}$$
 (8)

Q.9 a. Find the inverse Laplace transform of
$$\frac{s-4}{4(s-3)^2+16}$$
 (8)

b. Apply convolution theorem to find
$$L^{-1} = \left\{ \frac{s}{\left(s^2 + 1\right)\left(s^2 + 4\right)} \right\}$$
 (8)

(8)