DipIETE - ET/CS (New Scheme)

Time: 3 Hours

DECEMBER 2015

Max. Marks: 100
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q. 1 Choose the correct or the best alternative in the following:

a. $\lim _{x \rightarrow 0}\left\{\frac{e^{x}+\sin x-1}{\log (1+x)}\right\}$ is equal to
(A) 0
(B) 2
(C) -2
(D) $1 / 2$
b. The value of $\int_{0}^{\pi / 2} \sin ^{6} x \cos ^{3} x d x$ is equal to
(A) $\frac{5 \pi}{4096}$
(B) $\frac{5 \pi}{4069}$
(C) $\frac{5 \pi}{6094}$
(D) $\frac{5 \pi}{9064}$
c. If $Z_{1}=2-5 i, Z_{2}=-1+4 i, Z_{3}=6+i$ and $Z_{4}=3-7 i$, then $\frac{\left(Z_{1}+Z_{2}\right) Z_{3}}{Z_{4}}$ equals
(A) $\frac{28}{29}-\frac{17}{29} i$
(B) $\frac{-28}{29}+\frac{17}{29} i$
(C) $\frac{-28}{29}-\frac{17}{29} i$
(D) $\frac{28}{29}+\frac{17}{29} i$
d. If \vec{a} and \vec{b} are two unit vectors inclined at an angle θ and are such that $\vec{a}+\vec{b}$ is a unit vector, then θ is equal to
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{2}$
(D) $\frac{2 \pi}{3}$
e. Let $\vec{a}=(1,2,0), \vec{b}=(-3,2,0), \vec{c}=(2,3,4)$ then $\vec{a} \cdot(\vec{b} \times \vec{c})$ equal
(A) 31
(B) 30
(C) 33
(D) 32
f. The solution of the differential equation $\left(D^{2}+4\right) y=e^{x}$ is
(A) $C_{1} \cos 2 x-C_{2} \sin 2 x+\frac{e^{x}}{4}$
(B) $C_{1} \cos 2 x+C_{2} \sin 2 x+\frac{e^{x}}{4}$
(C) $C_{1} \cos 2 x+C_{2} \sin 2 x+\frac{e^{x}}{5}$
(D) $C_{1} \cos 2 x-C_{2} \sin 2 x+\frac{e^{x}}{5}$
g. The voltage and current of a circuit are given by the complex numbers $3+4 j$ and $2-5 j$ respectively. The complex number that will be the impedance of the circuit is
(A) $\frac{14}{29}+\frac{23}{29} j$
(B) $\frac{14}{29}-\frac{23}{29} j$
(C) $\frac{-14}{29}-\frac{23}{29} j$
(D) $\frac{-14}{29}+\frac{23}{29} j$
h. The series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots \infty$ is
(A) Convergent
(B) Divergent
(C) Oscillatory
(D) None of these
i. The Laplace transform of $4 \sin ^{3} t$ is
(A) $\frac{s}{s^{2}+1}-\frac{3}{s^{2}+9}$
(B) $\frac{3}{s^{2}+1}-\frac{3}{s^{2}+9}$
(C) $\frac{1}{s^{2}+1}+\frac{s}{s^{2}+9}$
(D) $\frac{1}{s^{2}+1}+\frac{1}{s^{2}+9}$
j. $\quad L^{-1}\left(\frac{1}{s\left(s^{2}+1\right)}\right)$ is
(A) $1+\cos t$
(B) $1-\sin t$
(C) $1-\cos t$
(D) $1+\sin t$

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

Q. 2 a. Expand $\log _{e} x$ in powers of $(x-1)$ and hence evaluate $\log _{e} 1.1$ correct to 4 places of decimal.
b. Evaluate $\underset{x \rightarrow 0}{\operatorname{lt}}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$
Q. 3 a. Evaluate by using reduction formula
$\int_{0}^{\pi / 6} \cos ^{4} 3 \phi \sin ^{2} 6 \phi d \phi$
b. Find the area common to the parabola $y^{2}=x$ and the circle $x^{2}+y^{2}=2$.
Q. 4 a. If n is positive integer, prove that

ROLL NO.

$$
\begin{equation*}
(\sqrt{3}+i)^{n}+(\sqrt{3}-i)^{n}=2^{n+1} \cos \frac{n \pi}{6}, \quad(i=\sqrt{-1}) \tag{8}
\end{equation*}
$$

b. Two impedances $Z_{1}=8+j 6$ ohms \& $Z_{2}=6-j 8$ ohms are connected in parallel across 200 volts, calculate the magnitude of current in each branch and the total current in the circuit.
Q. 5 a. Forces of magnitude 5 and 3 units acting in the directions $6 i+2 j+3 k$ and $3 i-2 j+6 k$ respectively act on a particle which is displaced from the point $(2,2,-1)$ to $(4,3,1)$. Find the work done by the forces.
b. Find the volume of the parallelepiped, if $\vec{a}=-3 i+7 j-5 k$, $\vec{b}=-3 i+7 j-3 k$ and $\vec{c}=7 i-5 j-3 k$ are the three coterminous edges of the parallelepiped.
Q. 6 a. Solve $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=\sin 2 x$
b. A Condenser of capacity C is discharged through the inductance L and a resistance R in series and the charge q at any time t satisfies the equation
$L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=0$
Given that $L=0.25$ henry, $R=250$ ohms, $C=2 \times 10^{-6}$ farad and that when $t=0$, the charge $\mathrm{q}=0.002$ coulombs, and the current $\frac{d q}{d t}=0$, obtain the value of q in terms of t.
Q. 7 Test for convergence the series given below:
a. $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
b. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+\sqrt{n+1}}$
Q. 8 Find the Laplace transform of $f(t)$ where
a. $f(t)=2 \sin 2 t \cos 4 t$
b. $f(t)=\frac{e^{a t}-\cos b t}{t}$
Q. 9 a. Find the inverse Laplace transform of $\frac{s-4}{4(s-3)^{2}+16}$
b. Apply convolution theorem to find $L^{-1}=\left\{\frac{s}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\right\}$

