Code: DC54/DC104 Subject: DATA STRUCTURES

DiplETE - CS (Current & New Scheme)

Time: 3 Hours

DECEMBER 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the co	orrect or t	he best al	ternative in	the following:	(2×10)
		_	_			

- a. Array as data structures is good for
 - (A) Sequential access of data
- **(B)** Direct access of the data
- (C) Both (A) and (B)
- (D) None of these
- b. A sorting search cannot have complexity less than
 - (**A**) O(n)

 $(B) O(\log n)$

(C) $O(n^2)$

- **(D)** $O(n \log n)$
- c. On a 32 bit computer, an integer is stored in
 - **(A)** 4 bytes

(B) 2 bytes

(C) 8 bytes

- **(D)** 6 bytes
- d. Adjacency matrix is used to represent
 - (A) Only undirected graph
- (B) Only directed graph
- (C) Both (A) and (B)
- (**D**) A graph with loop only
- e. Which of the following data structure is suitable for deletion of an item with minimum overhead?
 - (A) A simple linked list
- (B) An array
- (C) A doubly linked list
- (**D**) Circularly linked list
- f. How many pointer assignments will be required to merge two circular lists?
 - **(A)** 2

(B) 3

(C) 4

- **(D)** 1
- g. A tree contains one root and
 - (A) Any number of other nodes
 - **(B)** n internal nodes and m leaf nodes such that $n \ge m$
 - (C) n internal nodes and m leaf nodes such that $n \le m$
 - **(D)** n internal nodes and m leaf nodes such that n = m
- h. Which of the following statement is false?
 - (A) Stack concept can be implemented using array.
 - (B) Stack concept can be implemented using Linked list.
 - (C) Stack is equivalent to LIFO structure.
 - (**D**) Stack is equivalent to FIFO structure.

Code: DC54/DC104

Subject: DATA STRUCTURES

	1.	Expression.	rations, parentheses are used in				
			B) Pre-order D) All of these				
	j.	A DAG has					
		(A) Exactly one cycle(C) No cycle	(B) Atleast one cycle(D) None of these				
		Answer any FIVE Questions of Each question carri	•				
Q.2	a.	What is register variable and how Whether a memory is allocated for answer.	•				
	b.	Write a recursive function to multiply	y two positive integers.	(8)			
Q.3	a.	Using a suitable example, explain the method of passing a structure as parameter to a function. (8)					
	b.	Can we define a structure having or your answer with a suitable reasoning	-	Support (4)			
	c.	Differentiate between access mode "language.	a" and "w+" in file management t	using C (4)			
Q.4	a.	Write an algorithm to determine trans	pose of a matrix.	(8)			
	b.	Write the quick sort algorithm to sascending order.	sort an unsorted array of n elem	ents in (8)			
Q.5	a.	Write a method to add, delete and sea	rch an item in queues.	(8)			
	b.	Write the two basic operations performent function in C language.	med with a stack. Write the operati	(8)			
Q.6	a.	What happens when the last node is pointer? What will happen to your pro	<u>-</u>	NULL (6)			
	b.	How a polynomial of degree 'n' can your answer with a suitable example.	be represented using linked list? I	Explain (10)			
Q.7	a.	Write two applications of doubly lillinked list.	inked list and its advantage over	singly (8)			
	b.	. Write a program to print a list in reprinted first and first element should		should be (8)			
Q.8	a.	When a graph is called a connectonnectivity in a graph.	ted graph? Write an algorithm	to test (10)			
	b.	Write an algorithm to add a new elem	ent in a binary search tree.	(6)			
Q.9		Write short notes on:		(8+8)			
		(i) Depth first traversal of a graph(ii) Heap sort					