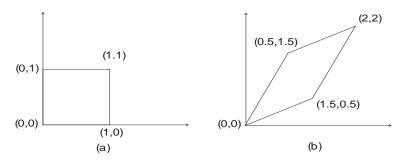
ROLL NO.

Code: CT72

Subject: COMPUTER GRAPHICS

ALCCS

Time: 3 Hours

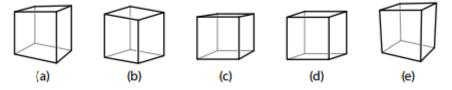

DECEMBER 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
- **Q.1** a. Computer graphics has enhanced the quality of work in many areas. Support this statement through a brief discussion on areas of application of computer graphics. Specify at least one specific application.
 - b. While drawing a circle, co-ordinates of only one eighth of the total pixels lying on circumference of a circle are computed. Why?
 - c. As a part of graphics design application, you are supposed to eliminate the hidden surfaces in your design. You have an option of choosing either the Z-Buffer technique or the Painters algorithm. Which algorithm will you choose for depth calculation at each pixel on a scan line can be done incrementally if the plane equation for each polygon is available?
 - d. In depth sorting method, indicate the tests that are to be carried out to determine if two surfaces R and S need not be ordered.
 - e. A square shown in (a) is converted to a parallelogram shown in (b) using composite transformation matrix M. Determine M.



- f. How will you generate RGB Colour Cube
- g. Briefly describe following OpenGL functions and their application:
 (i) glutInit()
 (ii) gluInitDisplayMode()
 (iv) glOrtho()
 (7×4)

Code: CT72

Subject: COMPUTER GRAPHICS

- Q.2 a. Explain the midpoint circle drawing algorithm. Illustrate the algorithm, assuming radius equal to 10 cm and the Centre of the circle at origin. (10)
 - b. Consider a line from (0, 0) to (4, 6). Rasterize this line using simple DDA algorithm. (8)
- Q.3. a. Find the homogeneous matrix that transforms the 2D vertices of object A to the corresponding vertices of object B. Express the matrix as a composition of elementary transformations namely translation, scaling and rotation. (6)
 - b. Translate the rectangle (2,2), (2,8), (10,8), (10,2) 2 units along x-axis and 3 units along y-axis. (6)
 - c. Consider following line drawings of different views of a cube.

Classify the views based on projections: parallel projection, one-point perspective, two-point perspective, or three-point perspective. (6)

Q.4	a.	What is the Parametric Sweeping? Give the derivation of solving any point on the surface using Bezier curve.	e (12)
	b.	Distinguish between Bezier Surface and B-Spline Surface.	(4)
	c.	Define the applications of Bilinear surfaces.	(2)
Q.5	a.	What are the various types of 3D transformations? Explain each briefly.	(12)
	b.	How do we perform the perspective projection from eye space into screen space?	(6)
Q.6	a.	How visible surface determination is done? Explain the painter's algorithm for detecting combined object and image space.	r (10)
	b.	What is Gouraud shading? Explain it with an example. What are its drawbacks?	(8)
Q.7	a.	What is random midpoint displacement method? Explain with an example.	(10)
	b.	Explain the concept of simulating accelerations in animation.	(4)
	c.	Write a short note on Self Similar fractals.	(4)

CT72 / DECEMBER-2015