ROLL NO. _____

Code: AE74/AE122/AC122

Subject: VLSI DESIGN

AMIETE – ET/CS (Current & New Scheme)

Time: 3 Hours

DECEMBER 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

a. CMOS is equal to

(A) NMOS+ PMOS	(B) PMOS+PMOS
(C) VMOS+NMOS	(D) None of the above

- b. To achieve equal pullup and pulldown times in a CMOS inverter, the P device is usually several times wider than the N device. What is the main reason for this?
 - (A) Hole mobility is greater than electron mobility.
 - (B) Electron mobility is greater than hole mobility.
 - (C) The P threshold is greater than the N threshold.
 - (**D**) The N threshold is greater than the P threshold.
- c. Which of the following layers is NOT needed to layout an nMOS transistor?

(A) Active	(B) Via
(C) Poly	(D) n-Select

d. In saturation mode of operation drain current I_{ds} depends on

$(\mathbf{A}) \mathbf{V}_{\mathrm{GS},} \mathbf{V}_{\mathrm{t}}$	$(\mathbf{B}) \mathbf{V}_{\mathrm{DS}}, \mathbf{V}_{\mathrm{GS}}, \mathbf{V}_{\mathrm{SB}}$
(C) V_{GS}	(D) None of the above

e. Which equation is correct? V_{NL} Noise Margin Low, V_{NH} = Noise Margin High

(A) $V_{NL} = V_{IL(max)} + V_{OL(max)}$	(B) $V_{NH} = V_{OH(min)} + V_{IH(min)}$
(C) $V_{NL} = V_{OH(max)} - V_{IH(max)}$	(D) $V_{\text{NH}} = V_{\text{OH(min)}} - V_{\text{IH(min)}}$

f. Which logic family combines the advantages of CMOS and TTL?

(A) BiCMOS	(B) TTL/CMOS
(C) ECL	(D) TTL/MOS
The total propagation dal	ay time T in Comy Skin Adden is ai

g. The total propagation delay time T in Carry Skip Adder is given by

$(\mathbf{A}) \mathbf{T} = \mathbf{n}/\mathbf{M}$	(B) $T = 2 (P-1) K_1 + (M-2) K_2$
(C) $T = 2 (P-1) K_1$	$(\mathbf{D}) \mathbf{T} = \mathbf{M}/\mathbf{n}$

- h. The power consumption is least in CMOS circuits as compared to NMOS and PMOS circuits. This is because, in CMOS
 - (A) Both the transistors remain in off-state most of the time.
 - (B) Small voltages are required.
 - (C) High value resistors are used

(D) Both the transistors go to on-state simultaneously only for a very short time during change of states

i. The gate area of the device is

$(\mathbf{A}) \mathbf{A}_{\mathrm{g}} = \mathbf{C}_{\mathrm{ox}} \mathbf{L} \mathbf{W}$	$(\mathbf{B}) \mathbf{A}_{g} = \mathbf{L} \mathbf{W}$
(C) $A_g = LW/C_{ox}$	$(\mathbf{D}) \mathbf{A}_{g} = \mathbf{C}_{o} \mathbf{L}$

j. The fastest memory is

(A) DRAM	(B) ROM
(C) CACHE	(D) EPROM

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Explain the C-V characteristics of Ideal MOS System. Explain Flat Band Voltage. (8)
 - b. Explain the different fabrication steps of n well process for CMOS Inverter. (8)
- Q.3 a. Derive the expression for the threshold voltage of a MOS transistor and explain the significance of different parameters present in the equation. (8)
 - b. Determine the pull up to pull down ratio for an n MOS inverter driven through one or more pass transistors. (8)
- Q.4 a. Draw the schematic for EX-OR gate using CMOS logic. (8)
 - b. Explain Lambda (λ) based design rules. (8)
- Q.5 a. Explain how to estimate wiring capacitances? (8)
 - b. Calculate area capacitance values associated with structures occupying more than one layer as shown in figure given below (8)

Value in $pF \times 10^{-4}/\mu m^2$ (Relative values in brackets) Capacitance 5 µm 2 µm 1.2 µm 4 (1.0)8 (1.0)16 1 (0.25)1.75 (0.22)

Gate to channel (1.0)Diffusion (active) 3.75 (0.23) Polysilicon* to substrate 0.4 (0.1)0.6 (0.075) 0.6 (0.038) Metal 1 to substrate 0.3 (0.075)0.33 (0.04) 0.33 (0.02) Metal 2 to substrate 0.2 (0.05)0.17 (0.02) 0.17 (0.01) 0.5 (0.03) Metal 2 to metal 1 0.4 (0.1)0.5 (0.06) Metal 2 to polysilicon 0.3 (0.075)0.3 (0.038) 0.3 (0.018)

Notes: Relative value = specified value/gate to channel value for that technology. *Poly. 1 and Poly. 2 are similar (also silicides where used).

Q.6	a.	What is short channel effect? Explain	(8)
	b.	Explain the difference between static Logic circuits and Dynamic Logic Ci	rcuits (8)
Q.7	a.	Design and explain 4 X 4 crossbar switch.	(8)
	b.	Draw and explain a possible arrangement of the adder elements for arithmetic and logical functions.	both (8)
Q.8	a.	Briefly explain the operation of 6T SRAM memory structure with rea- write circuitry. Explain their timing diagrams.	d and (8)
	b.	Discuss the different ground rules for successful design.	(8)
Q.9	a.	Explain the aspects of design tools.	(8)
	b.	Explain different VLSI design styles.	(8)