ROLL NO.

Code: AE72

Time: 3 Hours

Subject: MICROWAVE THEORY AND TECHNIQUES

AMIETE – ET (Current Scheme)

DECEMBER 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER. NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Q.1Choose the correct or the best alternative in the following: (2×10)
 - a. The velocity of a transmission line
 - (A) depends on the dielectric strength of the material used
 - (B) increases the velocity along transmission line
 - (C) is governed by the skin effect
 - (D) is higher for a solid dielectric than for air
 - b. An air filled rectangular waveguide of inside dimensions 7×3.5 cm operates in the dominant TE_{10} mode. The cut off frequency is

(A) 4.28 MHz	(B) 4.28 GHz
(C) 2.14 GHz	(D) 8.56 GHz

c. Which of the following modes of transmission will not be supported by a rectangular waveguide?

(A)	TE_{10}	(B) <i>TE</i> ₁₁
(C)	TM_{11}	(D) TM_{10}

d. A 3 – port circulator is shown in the figure. Which of the following scattering matrices relates to this Circulator?

ROLL NO.

Code: AE72 Subject: MICROWAVE THEORY AND TECHNIQUES

	e.	In Cavity Magnetron, strapping is used	to		
		(B) Prevent cathode back heating			
		(C) Ensure bunching			
		(D) Improve the phase focussing effect			
	c				
	I.	(A) PAPITT Diada	(P) IMPATT Diodo		
		(A) DARITT Diode	(D) Step Becovery Diode		
		(C) Guilli Diode	(b) step Recovery Diode		
	g.	g. The major advantage of TWT over Klystron is			
		(A) Large bandwidth	(B) High gain		
		(C) High impedance	(D) High output		
	h.	The Cross Field Amplifier (CFA) is a			
		(A) Linear Amplifier	(B) Parametric Amplifier		
		(C) Non linear Amplifier	(D) Saturated Amplifier		
	i.	The modes on micro-strip line are	-		
		(A) TEM	(B) Quasi TEM		
		$(\mathbf{C}) TE$	(D) TM		
	į.	The process of transferring patterns of a	geometric shapes on a mask to a thin layer of		
	5	resist is known as			
		(A) Ion implantation	(B) Diffusion		
		(C) Lithography	(D) Epitaxial growth		
		Answer any FIVE Questions	out of EIGHT Questions.		
		Each question car	ries 16 marks.		
Q.2	a.	Explain (i) Single stub matching and (i	ii) Double stub matching (8)		
	b.	A lossless line has a characteristic in	npedance of 50 Ω and is terminated in a load		
	resistance of 75 Ω . The line is energised by a generator which has an output				
	impedance of 50 Ω and an open-circuit output voltage of 30 V (rms). The line is				
	assumed to be 2.25 wavelengths long. Determine: (8)				
		(i) The input impedance			
		(ii) The magnitude of the instantan	eous load voltage		
		iii) The instantaneous power delive	red to the load		
		-			

- **Q.3** a. An air filled rectangular waveguide has dimensions of a = 6 cm and b = 4 cm. The signal frequency is 3 GHz. Compute the following for the TE_{10} mode; (8)
 - (i) Cut off frequency
 - (ii) Wavelength in the waveguide
 - (iii) Phase velocity
 - (iv) Group velocity
 - b. A TE_{11} mode is propagating through a circular waveguide. The radius of the guide is 5 cm and the guide contains an air dielectric. (Given that $X'_{11} = 1.841 = k_c a$). (8)
 - (i) Determine the cutoff frequency.
 - (ii) Determine the wavelength λ_g in the guide for an operating frequency of 3GHz.
 - (iii) Determine the wave impedance Z_g in the guide.

ROLL NO. _____

Code	e: A	E72 Subject: MICROWAVE THEORY AND TECHN	NIQUES
Q.4	a.	Explain the working of Microwave Circulator. Explain how a four port Circula constructed with two Magic Tees?	tor is (10)
	b.	What are Directional Couplers? Explain with a neat diagram. Derive S-matr Directional Coupler discussed.	rix of (6)
Q.5	a.	Explain the physical description of Read Diode.	(6)
	b.	Explain the principle of operation TRAPATT Diodes.	(10)
Q.6	a.	Explain the effect of Lead-inductance and interelectrode capacitance in vacuum at microwave frequencies.	tubes (8)
	b.	Explain the velocity modulation process in Two cavity Klystron.	(8)
Q.7	a.	Explain the power output and efficiency of a Magnetron.	(8)
	b.	Explain the principle of operation Forward Wave Cross-Field Amplifier.	(8)
Q.8	a.	Explain (i) Dielectric Losses (ii) Ohmic Losses in a microstrip line.	(8)
	b.	Explain (i) Distributed Parameters	
		(ii) Characteristic Impedance and(iii) Attenuation Losses in a parallel strip-lines.	(8)
Q.9	a.	What is a substrate? What are the characteristics of an ideal substrate material?	(6)
	b.	What for resistive materials are used and write the properties of a good micro resistor?	wave (4)
	c.	Explain thin film formation.	(6)

3