Code: AE65/AE116

ROLL NO. ______ Subject: ANALOG COMMUNICATIONS

AMIETE – ET (Current & New Scheme)

Time: 3 Hours

DECEMBER 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q1.	Choose the correct or the best alternative in the following:		(2×10)
	 a. The maximum power efficiency of (A) 25 % (C) 75 % 	of AM modulator is (B) 50 % (D) 100 %	
	 b. A pre-emphasis circuit provides extra noise immunity by (A) boosting the higher audio frequencies (B) delaying the higher audio frequencies (C) pre amplifying the whole audio band (D) converting the phase modulation to FM 		
	 c. Single Sideband system needs		
	 d. Thermal Noise is independent of (A) Bandwidth (C) Centre Frequency 	(B) Temperature(D) Boltzman's Constant	
	 e. The very high frequency (VHF) ra (A) 3-30 MHz (C) 300-3000 MHz 	ange extends from (B) 30-300 MHz (D) 3000-30000 MHz	
	 f. Pulse Width Modulation (PWM) needs		
	g. In order to reduce cross-sectional(A) rectangular(C) ridged	dimensions, the wave guide to use(B) circular(D) flexible	
	h. The Maximum Usable Frequency (MUF) or secant law is expressed by relati (if Θ = angle of incidence) (A) cos Θ /critical frequency (B) cos Θ ×critical frequency (C) critical frequency/cos Θ (D) none of these		on

ROLL NO. _

	i. I	f carrier is fully modulated, the total power will be(A) Pc(B) 2 Pc(C) 1.5 Pc(D) 2.5 Pc	
	j.]	The dominant mode in a rectangular waveguide is(A) TE20(B) TE10(C) TE11(D) TM10	
		Answer any FIVE Questions out of EIGHT Questions Each question carries 16 marks.	
Q. 2	a.	Explain the need of modulation in communication system.	(8)
	b.	What is Shot noise? Describe the variables on which Shot noise depends.	(8)
Q. 3	a.	Describe briefly amplitude modulation. Develop a mathematical expression for Amplitude Modulation Index and what happens if this index exceeds 1?	or (8)
	b.	Calculate the percentage saving in power, if only one side band transmission is transmitted for: (i) 80% modulation (ii) 50% modulation	.s (8)
Q. 4	a.	What are the advantages and disadvantages of frequency modulation is comparison to amplitude modulation?	n (8)
	b.	Describe the concept of pre-emphasis and de-emphasis with the help of circuidiagram.	it (8)
Q. 5	a.	Draw the Block Diagram of basic super heterodyne receiver and briefly explai it's working. Give its uses.	n (8)
	b.	What factors are to be considered while choosing the value of Intermediate Frequency (IF)? (8)	
Q.6	a.	Discuss the standing waves and impedances in a quarter wave and half wav length transmission lines.	e (8)
	b.	Explain how a smith chart can be used for the calculation of the following: (i) Admittance (ii) Impedance (iii) VSWR	(8)
Q. 7	a.	What are Waveguides? Briefly describe the working principle of a Waveguide b explaining the propagation of waves in it? Explain how a section of Rectangula Waveguide depends upon the frequency of the signal?	y ur (8)
	b.	Rectangular Waveguide is having inside dimensions of 5×2 cms. Calculate th cutoff frequency with a dominant mode of TE1,0?	e (8)
Q.8	a.	Explain with a block diagram, how demodulation of PPM pulses can be achieved List the advantages and disadvantages of PPM, over other type of systems.	l. (8)
	b.	What is Information Theory and Coding of Information? Briefly describe Baudo Code?	ot (8)
Q.9	a.	Describe the elements of Long- Distance telephony?	(8)
	b. bas	What is Multiplexing and what were the reasons for developing it? What are its two sic forms of Multiplexing?	0 (8)