ROLL NO.

Code: AE63/AE114 Subject: ELECTROMAGNETICS & RADIATION SYSTEMS

AMIETE – ET (CURRENT & NEW SCHEME)

Time: 3 Hours

DECEMBER 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best alter	(2×10)	
	 a. Stoke's theorem relates	(B) volume, line (D) all of these	integral.
	b. Which of the following is true? (A) $\overline{E} = -\nabla V$ (C) $\overline{E} = -\nabla \times V$	(B) $\overline{E} = -\nabla \cdot V$ (D) None of these	
	rcular coil of		
	d. The magnitude of ratio of conduction current density to the displacent current density when $\overline{E} = E_0 \sin \omega t$ is (Where symbols have their undensity) (A) $\sigma/\omega \in$ (B) $\sigma\omega/\in$ (C) $\sigma \in /\omega$ (D) None of these		
 e. Acc to Law, induced current act to produce an oppositive (A) Bio-Savart's (B) Lenz's (C) Ampere's (D) Faraday's 		opposite flux.	
	 f. Point charges 30 nC, -20 nC and 10 nC are located at (-1, 0, 2), (0, 0,0) and (1, 5, -1) respectively. The total flux leaving a cube of side 6m centered at t origin is (A) -20 nC (B) 10 nC (C) 20 nC (D) 30 nC 		
	 g. Divergence theorem is applicable (A) static field only (B) time varying fields only (C) both static and time varying fields only (D) Electric fields only 	for felds	

ROLL NO.

Code: AE63/AE114 Subject: ELECTROMAGNETICS & RADIATION SYSTEMS

	h.	Some unknown material has a conductivity of 10^6 mho m ⁻¹ , and a permeability of $4\pi \times 10^{-7}$ H/m. The skin depth for the material at 1 GHz is			
		(A) 15.9 μm (H	3) 20.9 μm		
		(C) $25.9 \mu\text{m}$ (I	D) 30.9 µm		
	i.	If the antenna diversity and antenna gain are equal then antenna efficiency is $\%$?			
		(A) 20 (H	3) 50		
		(C) 75 (I	D) 100		
	j.	The unit of $\nabla \times H$ is			
		$(A) A \qquad (H) \\ (C) A/m^2 \qquad (I)$	3) A/m		
			D) Am		
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.					
Q.2	a. Define the electric field intensity. Find the electric field intensity at a point				
		lying at a distance from an infinite straight uniform charged wire.			
	b. State and prove divergence theorem.			(8)	
Q.3	a.	1. State and explain the boundary condition at the interface of two dielectrics in a electrostatic field.			
	b.	Drive the equation for the energy densi	ty in an electrostatics.	(8)	
Q.4	a.	a. Derive Poisson's and Laplace's equation.		(8)	
	b.	Derive Laplace's equation for parallel plate capacitor in rectangular coordinate and determine C there from. (8)			
Q.5	a.	Using Ampere's law, calculate the magnetic field intensity at a point due to line current placed along the z-axis extending from $-\infty$ to ∞ .			
	b.	Apply Biot-Savart's law to calculate carrying loop.	e magnetic field of a circular curre	nt (8)	
Q.6	a.	Find the force between an infinite straight line wire carrying a current I_1 , and a square loop of side a with current I_2 , the extended plane of loop containing the straight line wire. The shortest distance from the wire to the loop is d and the wire lies parallel to one side of the loop. (8)		a ne ne (8)	
	b.	Write note on. (i) Hysteresis loss (ii) Retarded potential		(8)	
Q.7	a.	Explain the concept of "Displacement from Conduction current?	t current". How is this current differe	nt (8)	
	b.	Derive the Maxwell's equation for stati	c and time varying electric field.	(8)	
Q.8.	a.	Define the terms "Virtual height", "Cri-	tical frequency" and "Skip distance".	(8)	
-	b.	Assume the reflection takes place at a height of 400km and that the maximum density in the ionosphere corresponds to a 0.9 refractive index at 10 MHz. What will be the range for which the MUF is 10 MHz? Assume flat earth. (8)			
Q.9	a.	State Babinet principal and explain complementary antenna?	how it gives rise to the concept	of (8)	
	b.	Write short note on: (i) Marconi antenna & Hertz antenna	(ii) YAGI_UDA antenna.	(8)	

2