ROLL NO.

Code: AE62/AC62/AT62 Subject: OPERATIONS RESEARCH & ENGG. MANAGEMENT

AMIETE – ET/CS/IT (Current Scheme)

Time: 3 Hours

DECEMBER 2015

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Ouestions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Selecting THREE questions from part A and TWO questions from part B.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or the best alternative in the following: 0.1

a. A transportation problem is called balanced if:

(A) $\sum_{i} a_{i} = \sum_{j} b_{j}$	(B) $\sum_{i} a_i < \sum_{j} b_j$
(C) $\sum_{i} a_i > \sum_{j} b_j$	(D) $\sum_{i} a_i \neq \sum_{j} b_j$

- b. Which of the following is not a queue structure? (A) FIFO (B) LIFO (C) SIRO (D) FIRO
- c. McGregor's two theories for motivation are: (A) Theory A and Theory B (**B**) Theory A and Theory X (C) Theory X and Theory Y (**D**) Theory Y and Theory B
- d. If t_m , t_p and t_o are most likely time, pessimistic time and optimistic time of an activity respectively, then the expected time t_e is calculated as:

	(A) $\frac{t_p + 4t_m + t_0}{6}$ (C) $\frac{t_p + 6t_o + t_m}{4}$	(B) $\frac{t_m + 4t_o + t_p}{6}$ (D) $\frac{t_p + 6t_m + t_0}{4}$
	$(\mathbf{C}) \ \frac{t_p + 6t_o + t_m}{4}$	$(\mathbf{D}) \ \frac{t_p + 6t_m + t_0}{4}$
e.	CPM is	
	(A) Correct project management	(B) Critical path method
	(C) Critical project management	(D) Correct path method
f.	The number of basic feasible solution are:	ons of a LPP with n-variables and m-equations
	(A) C (m, n)	(B) C (n, m)
	(C) C $(m + n, m)$	(D) C $(m + n, n)$
g.	Slack variable is added to	
U	(A) A constraint of \leq type	(B) A constraint of \geq type

(C) An equation (**D**) None of these

1

ROLL NO.

Code: AE62/AC62/AT62 Subject: OPERATIONS RESEARCH & ENGG. MANAGEMENT

(A) $Rows = Columns$	(B) Rows < Columns
(C) Rows > Columns	(D) None of these
Time series analysis is used in:	
(A) Game Theory	(B) Motivation Theory
(C) Queuing Theory	(D) Forecasting

PART A Answer any THREE Questions. Each question carries 16 marks.

- Q.2 a. State the different phases in an operations research study. (6)
 - b. Rolls of paper having a fixed length and width of 180 cm. are being manufactured by a paper mill. These rolls have to be cut to satisfy the following demand: (10)

Width:	80 cm.	45 cm.	27 cm.
No. of Rolls:	200	120	130

Obtain the linear programming formulation of the problem to determine the cutting pattern, so that the demand is satisfied and wastage of paper is a minimum.

Q.3 a. Give the standard form of a linear programming problem. (4)

b. Solve the following LPP using Simplex method:	(12)
Min $Z = x_1 - 3x_2 + 2x_3$	
Subject to: $3x_1 - x_2 + 2x_3 \le 7$	
$-2x_1+4x_2 \le 12$	
$-4x_1 + 3x_2 + 8x_3 \le 10$	
$\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \geq 0.$	

Q.4 Find the initial basic feasible solution for the following transportation problem using Vogel's approximation method. Further optimize the solution by MODI's method to minimize the total cost of transpiration. (6+10)

2

Origins / Destinations	D ₁	D ₂	D3	D ₄	D5	D ₆	Available
Destinations							
O1	1	2	1	4	5	2	30
O ₂	3	3	2	1	4	3	50
O ₃	4	2	5	9	6	2	75
O4	3	1	7	3	4	6	20
Requirements	20	40	30	10	50	25	

ROLL NO.

Code: AE62/AC62/AT62 Subject: OPERATIONS RESEARCH & ENGG. MANAGEMENT

- **Q.5** a. Distinguish between total float and free float.
 - b. A project consists of eight activities with the following time estimates:

(4) (12)

Activity	Time	Activity	Time
1-2	4	5-6	4
1-3	1	5 - 7	8
2-4	1	6 - 8	1
3 - 4	1	7 – 8	2
3-5	6	8 - 10	5
4 – 9	5	9 - 10	7

(i) Construct PERT network.

(ii) Compute T_E , T_L for each event.

(iii) Find the critical path.

Q.6 a. Define saddle point in a two-player zero-sum game. Find out the saddle point for the given pay-off matrix: (6)

$$A = \begin{bmatrix} 3 & 4 & 1 & -2 \\ 2 & 5 & 2 & 4 \\ -5 & 2 & 1 & 0 \end{bmatrix}$$

b. Customers arrive at one person barber shop according to Poisson process with a mean inter-arrival time of 20 minutes. Customers spend on an average of 15 minutes in the barber's chair. (2×5)

(i) What is the probability that a new arrival need not to wait for the barber to be free?

(ii) What is the expected number of customers in the barber shop?

(iii) How much time can a customer expect to wait for his turn?

(iv) How much time can a customer expect to append in the shop?

(v) Management will put in another chair and hire another barber when a customer's average time in the shop exceeds 1.25 hours. How much must the average rate of arrivals increase to warrant a second barber?

PART B

Q.7	a. Define management. What are the managerial functions?					
	b. Draw and explain line and staff organization. State its advantages disadvantages also.	and (8)				
Q.8	a. Define the various steps involved in the process of decision making.					
	b. What is forecasting? Explain the time series technique for forecasting.					
Q.9	a. What are the different methods for marketing communications?					
	b. Compare and contrast the Maslow and Herzberg theories of motivation.	(8)				

3