ROLL NO.

Code: AE56/AC56/AT56/AE107/AC107/AT107 Subject: ENGINEERING MATHEMATICS - II

AMIETE – ET/CS/IT (Current & New Scheme)

Time: 3 Hours

DECEMBER 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Q.1 Choose the correct or the best alternative in the following : (2×10)
 - a. The harmonic conjugate of u(x, y) = 4xy + x + 1 is :

(A) $2y^2 + y - 2x^2 + c$	(B) $2x^2 - y^2 + y + c$
$(\mathbf{C}) 2y^2 - y + c$	(D) $y^2 - x^2 + c$

- b. If f(z) is analytic within and on a simple closed curve C and a is any point inside C, then f(a) is :
 - (A) 0 (B) $\frac{1}{2\pi i} \int_{C} \frac{f(z)}{(z-a)} dz$ (C) $\frac{1}{\pi i} \int_{C} \frac{f(z)}{(z-a)} dz$ (D) $\frac{1}{2\pi i} \int_{C} \frac{f(z)}{(z-a)^{2}} dz$
- c. A velocity vector is given as $= 5xyi + 2y^2j + 3yz^2k$, the divergence of this velocity vector at (1, 1, 1, 1) is :

(A)	9	(B)	10
(C)	14	(D)	15

- d. Stoke's theorem connects :
 - (A) A line integral and a surface integral
 - (B) A surface integral and a volume integral
 - (C) A line integral and a volume integral
 - (D) Gradient of a function and its surface integral
- e. The work done by the force $F = (5xy 6x^2)i + (2y 4x)j_{in}$ moving a particle along the curve $y = x^3$ from the point (1,1) to (2,8) is : (A) 25 (B) 15 (C) 35 (D) 45

Code: AE56/AC56/AT56/AE107/AC107/AT107 Subject: ENGINEERING MATHEMATICS - II

f. Eliminating *a* and *b* from $z = ae^{bt} \sin bx$, we obtain the partial differential equation :

	$\frac{\partial^2 z}{\partial z}$	$\frac{\partial^2 z}{\partial^2 z}$		<u>ðz</u>	∂z	
(A)	∂x^2	∂t^2	(B)	∂x	ðt	
	$\partial^2 z$	<u>dz</u>		$\partial^2 z$	$\partial^2 z$	- ^
(C)	∂x^2	- Ət	(D)	∂x^2	∂t^2	- 0

g. Which of the following relation amongst finite differences is not correct :

(A) $\Delta^3 y_{-1} - \Delta^3 y_{-2} = \Delta^4 y_{-2}$	$(\mathbf{B}) \Delta^3 y_{-1} - \Delta^3 y_0 = \Delta^4 y_0$
$(\mathbf{C}) \ \Delta y_2 - \Delta y_1 = \Delta^2 y_1$	$(\mathbf{D}) y_2 - y_1 = \Delta y_1$

h. Two random variables X and Y are said to be independent if :

$(\mathbf{A}) E (XY) = 1$	$(\mathbf{B}) \ E (XY) = 0$
$(\mathbf{C}) E (XY) = E (X) E (Y)$	(D) $E(XY) = $ any constant value

i. To apply Simpson's 1/3rd and 3/8th rules both, the interval must be divided into minimum of sub-interval are :

(A) 4	(B) 5
(C) 6	(D) 8

j. A box contains 12 items out of which 4 are defective. A person selects 6 items from the box. The expected number of defective items out of his selected items is :

(A)	2	(B)	3
(C)	3/2	(D)	1⁄2

Answer any FIVE questions out of EIGHT questions. Each question carries 16 marks.

		_
Q.2	a. Use Cauchy_Riemann equations to find v where $u = 3x^2y - y^3$.	(8)
Q.3	 w = 2z+3/(z-4) maps the circle x² + y² - 4x = 0 onto the straight line 4u + 3 = 0, and explain why the curve obtained is not a circle. a. Prove that the function f(z) = u + iv where f(z) = x²(1+i)-y²(1-i)/(x²+y²) (z ≠ 0), f(0) = 0 is continuous and that Cauchy_Riemann equations are satisfied at the origin, yet f'(z) does not exist there. b. Expand f(z) = 1/((z+1)(z+3)) in a Laurent's series valid for the regions (i) z < 1 (ii) 1 < z < 3. 	(8) (8) (8)
Q.4	a. If $(\varepsilon) = \int_C \frac{6z^2 + 5z + 2}{z - \varepsilon} dz$, where C is the ellipse $\left(\frac{x}{2}\right)^2 + \left(\frac{y}{3}\right)^2 = 1$, find the values of $F(i), F'(-i)$ and $F''(-1)$.	(8)

ROLL NO.

Code: AE56/AC56/AT56/AE107/AC107/AT107 Subject: ENGINEERING MATHEMATICS - II

	b.	$If F = xy^2i + 2x^2y$	$vzj - 3yz^2k$,	find (i) Div F	(ii) Curl F	at the poir	nt (1, -1, 1) .	(8)
Q.5	a.	Find the direction $P(3,1,2)$ in the di	al derivative of rection of the	$\int_{f} \phi = (x^{2} + y_{zi}) + x^{2}$	$y^2 + z^2$) $z_j + x_{yk}$	$\frac{-1}{2}$ at the p	oint	(8)
	b.	Evaluate $\iint_{S} F \cdot m$ $F = 4xi - 2y^{2}j + x^{2} + y^{2} = 4, z = 0$	t dS with the h + $z^2 k$ taken o 0 and $z = 3$.	elp of Gauss's over the region	divergence S bounded	e theorem fo by)r	(8)
Q.6	a	Solve the partial $(z^2 - 2yz - y^2)$	differential equ p + (xy + z)	uation : x)q = xy - z	x			(8)
	b.	Solve by Charpit's $z = px + qy + pc$	s method : 7					(8)
Q.7	a.	Using Newton's d	ivided differen	nce formula, fi	nd <i>f</i> (4) if :			(8)
		x : -4	-1	0	2	5		
		f(x) : 124	45 33	5	9	1335		
	b.	Evaluate $\int_0^1 \frac{dx}{1+x}$ approximate value	\mathbf{x}^2 by using Si e of π in each c	mpson's 1/3 rd case.	and 3/8 th ru	le. Hence o	btain the	(8)
Q.8	a. In an examination the number of candidates who secured marks between certain limits were as follows :							
		Marks No. of Candidates	: 0-19 : 41	20-39 62	40-59 65	60-79 50	80-99 17	
		Estimate the numb	per of candidat	tes getting mar	ks less than	70.		(8)
	 b. From a pack of 52 cards, 6 cards are drawn at random. Find the probability of the following events : (i) Three are red and 3 are black cards (ii) Three are kings and 3 are queens 				(8)			
Q.9	a.	A continuous rand $(x) = 3 x^2, 0 \le 10^{-10}$	$\begin{array}{l} \text{lom variable } X \\ x < 1 \\ . \end{array}$	has the densi	ty function			
		Find a and b , when (i) $P(X \le a) =$	$P(X > \alpha);$	(ii) P (X > l	b) = 0.05			(8)
	b.	Fit a Poisson's dis frequencies ($e^{-0.5}$	stribution to the $= 0.61$:	e following an	d calculate	theoretical		
		Deaths : 0 Frequency : 12	1 22 60	2 15	3 2	4 1		(8)
AE56/	AC	56/AT56/		3		AMIET	E - ET/CS/	ΊT