ROLL NO. _

Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS-1 AE101/AC101/AT101

AMIETE – ET/CS/IT (Current & New Scheme)

Time: 3 Hours

DECEMBER 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Q2 TO Q8 CAN BE ATTEMPTED BY BOTH CURRENT AND NEW SCHEME STUDENTS.
- Q9 HAS BEEN GIVEN INTERNAL OPTIONS FOR CURRENT SCHEME (CODE AE51/AC51/AT51) AND NEW SCHEME (CODE AE101/AC101/AT101) STUDENTS.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. If
$$u = log \frac{x^2}{y}$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to
(A) 0
(C) u
(B) 1
(D) 2u
(D) 2u
(C) 2u
(C

1

Code: AE51/AC51/AT51 AE101/AC101/AT101

Subject: ENGINEERING MATHEMATICS-1

d. The Newton-Raphson algorithm for finding cube root of N is

(A)
$$x_{n+1} = \frac{1}{3} \left[2x_n + \frac{N}{x_n^2} \right]$$

(B) $x_{n+1} = \frac{1}{3} \left[x_n + \frac{N}{x_n^2} \right]$
(C) $x_{n+1} = \frac{1}{2} \left[x_n + \frac{N}{x_n} \right]$
(D) $x_{n+1} = \frac{1}{2} \left[2x_n + \frac{N}{x_n} \right]$

e. The solution of differential equation $(x^2-y^2) dx = 2xydy$ is

(A)
$$x^3-xy^2-x^2 y = C$$

(B) $x^3-3xy^2 = C$
(C) $x^3-xy^2+x^2 y = C$
(D) $x^3+3xy^2 = C$

f. Particular integral of the differential equation $(D^2-4D+3)y = e^{3x}$ is 1

(A)
$$\frac{1}{3}e^{3x}$$

(B) $\frac{1}{4}e^{3x}$
(C) $\frac{x}{2}e^{3x}$
(D) $\frac{1}{3}xe^{3x}$

g. The solution of differential equation $\frac{d^2y}{dx^2} + (a+b)\frac{dy}{dx} + aby = 0$ (A) $y = C_1 e^{ax} + C_2 e^{-bx}$ (C) $y = C_1 e^{ax} + C_2 e^{bx}$ **(B)** $y = C_1 e^{-ax} + C_2 e^{bx}$ **(D)** $y = C_1 e^{-ax} + C_2 e^{-bx}$ h. β (m+1, n) is equal to

(A)
$$\frac{m}{m+n}\beta(m,n)$$
 (B) $\frac{n}{m+n}\beta(m,n)$

(C)
$$\frac{m-n}{m+n}\beta(m,n)$$
 (D) $\beta(m,n)$

i. $J_{\frac{1}{2}}^{2}(x) + J_{-\frac{1}{2}}^{2}(x)$ is equal to

(A)
$$\frac{\pi x}{2}$$
 (B) $\frac{2}{\pi x}$
(C) $\frac{\pi}{2x}$ (D) $\frac{2x}{\pi}$

j.
$$5x^3+3x^2+x$$
 is equal to

(A)
$$5P_3(x) + 3P_2(x) + P_1(x)$$
 (B) $2P_3(x) + 3P_2(x) + 4P_1(x) + P_0(x)$

π

$$+2P_2(x) + 4P_1(x) + P_0(x)$$
 (**D**) $P_3(x) + P_2(x) + 3P_1(x) + P_0(x)$

(C) $2P_3(x)$

Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS-1 AE101/AC101/AT101

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

a. State and Prove Euler's theorem (2+6)Q.2 b. If u = x + y + z, uv = y + z, uvw = z, show that (8) $\frac{\partial(\mathbf{x},\mathbf{y},\mathbf{z})}{\partial(\mathbf{u},\mathbf{v},\mathbf{w})} = \mathbf{u}^2 \mathbf{v}$ a. Change the order of integration and evaluate $\int_{0}^{a} \int_{\frac{x}{x}}^{\sqrt{\frac{x}{a}}} (x^{2} + y^{2}) dx dy$ (8) Q.3 b. Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes y+z = 4 and z = 0(8) **Q.4** a. Investigate for consistency of the following equations and if possible find the solution: 4x - 2y + 6z = 8, x + y - 3z = -1, 15x - 3y + 9z = 21(8) Find the eigen values and eigen vectors of the matrix. (8) b. $\begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ a. Use Regula-Falsi method to compute a real root of the equation $x \ell og_{10} x = 1.2$ Q.5 correct to three decimal. (8) b. Apply Runge-kutta method to find an approximate value of y for x = 0.2 if $\frac{dy}{dx} = x + y^2$ given that y = 1 when x = 0. Take h = 0.2(8) a. Use method of variation of parameters to solve $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = \frac{e^x}{x}$ (8) Q.6 b. Solve the simultaneous equation: $\frac{dx}{dt} + y = \sin t$, $\frac{dy}{dt} + x = \cos t$ given that x = 2 and (8) y = 0 when t = 0.

ROLL NO. _____

Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS-1 AE101/AC101/AT101

Q.7 a. Obtain the series solution of
$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$$
 (8)

b. Show that
$$\int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} \, dx \times \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin x}} \, dx = \prod$$
 (8)

Q.8 a. Prove that
$$(1 - x^2) P'_n(n) = (n+1)[x P_n(n) - P_{n+1}(n)]$$
 (8)

b. Show that
$$e^{\frac{x}{2}\left(t-\frac{1}{t}\right)} = \sum_{n=-\infty}^{\infty} t^n J_n(n)$$
 (8)

Q.9 (For Current Scheme students i.e. AE51/AC51/AT51)

a. Solve the differential equation
$$\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right) \frac{dx}{dy} = 1$$
 (8)

b. Find the orthogonal trajectories of the family of hyperbolas $xy = C^2$ (8)

Q.9 (For New Scheme students i.e. AE101/AC101/AT101)

a. Find the Fourier sine transform of
$$\frac{e^{-ax}}{x}$$
 (8)

b. Find the z-transform of
$$\cos\left(\frac{n\pi}{2} + \frac{\pi}{4}\right)$$
 (8)

4