Code: AC65/AC116

U

AMIETE – CS (Current & New Scheme)

Time: 3 Hours

DECEMBER 2015

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. A relation R is defined on ordered pairs of integers as follows: (x, y)R(u, v) if x < u and y > v. Then R is (A) Neither a partial order nor an equivalence relation (B) A partial order but not a total order (C) A total order (**D**) An equivalence relation b. What is the possible number of reflexive relations on a set of 5 elements? (A) 2^{10} **(B)** 2^{15} **(C)** 2²⁰ **(D)** 2^{25} c. Consider the set $S = \{1, w, w^2\}$ where w and w^2 are cube roots of unity. If * denotes the multiplication operation, the structure (S,*) forms (A) A group (**B**) A ring (C) An Integral domain (D) A field d. The number of different ways for *n* people to arrange themselves in a straight line is (A) n **(B)** *n*! **(D)** n^2 (C) n-1 e. Power set P(A) will be having cardinality of **(B)** 2^2 **(A)** 2 **(D)** 2^{|A|} (**C**) 2^3 f. Find two incomparable elements in the poset $(\{1,2,4,6,8\},1)$ **(B)** (4,6) and (6,6) (A) (1,2) and (2,4) **(D)** (6,8) and (8,8) (C) (4,6) and (6,8) g. The Hamming distance between the codes x = 001100, y = 010110 is **(A)** 1 **(B)** 2 (C) 3 **(D)** 4 h. The solution of the recurrence relation $a_n = a \cdot a_{n-1}$ with the initial conditions $a_0 = 1$, $a_1 = a$ is (A) a^{n-1} **(B)** aⁿ⁻² (**C**) aⁿ⁻³ **(D)** aⁿ

Code	: AC65/AC116	Subject: DISCRETE STRUCTURE	S
	 i. Which one of the following is not necessarily a property of group? (A) Associativity (B) Commutativity (C) Existence of inverse for every statement (D) Existence of identity j. The mean and variance are equals in 		
	(A) Binomial distribution(C) Normal distribution	(B) Poission distribution(D) None of these	
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.			
Q.2	 a. Consider the following proposition p: ABC is isosceles q: ABC is equilateral r: ABC is equiangular Write down the following proposition 		(8)
	(i) $p \land (\sim q)$ (iii) $p \rightarrow q$ (v) $(\sim r) \rightarrow (\sim q)$ (vii) $r \rightarrow q$	(ii) $(\sim p) \lor q$ (iv) $q \rightarrow p$ (vi) $p \leftrightarrow (\sim q)$ (viii) $(q \land r) \rightarrow p$	
	 b. Is the following arguments valid? If two sides of a triangle are equal, then opposite angles are equal Two sides of a triangle are not equal ∴ The opposite angles are not equal 		(8)
Q.3	a. If $m = 2, n = 5$ and $H = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$		
	Determine the group code $e_{\rm H}$: B^2 –		(8)
		encoding function $e: B^2 \rightarrow B^5$ defined by = 01110, $e(11) = 11011$ is a group code.	(8)
Q.4	a. In a group (G,0), prove that $(a_0b)^{-1} = b^{-1}_0 a^{-1} \forall a, b \in G$		(8)
		ition modulo m ? Show that the set -negative integers is an Abelian group under .	(8)
Q.5	a. What do you mean by recurrence relation $a_n - 8a_{n-1} + 21a_{n-2} - 18a_{n-3} = 0$	e relation? Solve the following recurrence	(8)
	b. Solve the recurrence relation f_1 , $f_0 = 1, f_1 = 1$.	$f_n = f_{n-1} + f_{n-2}, n \ge 2$ with initial conditions	(8)

ROLL NO.

ROLL NO.

Code: AC65/AC116

Subject: DISCRETE STRUCTURES

- a. Show that $A \cap (B-C) = (A \cap B) (A \cap C)$ notations are usuals. **Q.6** (8) b. In a city three daily newspapers, X, Y, Z are published. 65% of the people of the city read X, 54% read Y, 45% read Z, 38% read X and Y, 32% read Y and Z, 28% read X and Z, 12% do not read any of the three papers. If 1000000 persons live in the city, find the number of the persons who read all the three newspapers. (8) **Q.7** a. Using rules of inference, show that $s \lor r$ is tautologically implied by $p \lor q$, (8) $p \rightarrow r, q \rightarrow s$ b. Give direct and indirect proof of $p \rightarrow q$, $q \rightarrow r$, $7(p \land q)$, $p \lor r \Rightarrow r$ (8) a. If $a = \{1, 2, 3, 4, 5, 6, 7\}$ and a relation R defined as $R = \{(x, y), ||x - y|| = 2\}$. Is R is **Q.8** an equivalence relation? (8) b. If (L, \leq) be a Lattice and $a, b, c \in L$ prove that if $a \leq c, b \leq c$, (8) (i) $a \lor b = a \oplus b \le c$ (ii) $a \wedge b = a * b \leq c$ a. Check whether the function $f(x) = x^2 - 11$ from R to R is one-one onto or both. Q.9 Justify. (8)
 - b. If $f,g: R \to R$ where f(x) = ax + b, $g(x) = 1 x + x^2$ and $(g_0 f)(x) = 9x^2 - 9x + 3$, then find the values of "a" and "b". (8)