Flowchart: Alternate Process: DECEMBER 2008Code: AE06/AC04/AT04                                                           Subject: SIGNALS & SYSTEMS

Time: 3 Hours                                                                                                     Max. Marks: 100

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

Q.1       Choose the correct or best alternative in the following:                                         (2x10)

                

a.       Two sequences  and are related by . In the

Z-domain, their ROC are

 

                   (A)  same                                            (B)  reciprocal of each other

(C)  negative of each other                   (D) complement of each other

       

b.      The autocorrelation of a sinusoid is

 

(A)    Sinc pulse                                     (B)  another sinusoid

(C)  Rectangular pulse                          (D)  Triangular pulse

                  

             c.   Which of the following is true for the system represented by

                    

(A)    Linear                                          (B)  Time invariant

(C)   Causal                                          (D)  Non Linear

 

             d.   The fourier transform of impulse function is 

 

(A)    *                                           (B)

(C)  1                                                 (D)

 

             e.   Convolution is used to find

                                                                            

(A)     amount of similarity between the signals                     

(B)     response of the system

(C)  multiplication of the signals                 

(D)  Fourier transform

 

             f.    The final value of  is   

 

(A)     2                                                  (B)  3

(C)                                              (D)  0

 

             g.   Discrete time system is stable if the poles are

 

(A)     within unit circle                            (B)  outside unit circle

(C)  on the unit circle                           (D)  None 

 


             h.   The z transform of   is

 

(A)                                               (B)

(C)                                         (D)

 

             i.    The area under Gaussian pulse is

 

                   (A)  Unity                                            (B) Infinity            

                   (C)  Pulse                                            (D) Zero   

       

             j.    The spectral density of white noise is

 

(A)  Exponential                                  (B)  Uniform

(C)  Poisson                                        (D)  Gaussian

 

 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

 

  Q.2     a.   Check whether the following signals are energy or power signal and hence find the corresponding energy or power?                                                (6)

                   (i)  

                   (ii)  

 

             b.   Find the convolution of two rectangular pulse signals shown below                    (10)

 

 

 

 

 

 


                                                          

 

  Q.3     a.   Given the Gaussian pulse  determine its fourier transform.              (8)

 

             b.   Find the exponential Fourier Series of the following signal?                                  (8)

 
 

 

 

 

 


       


Q.4       a.   State and prove the following properties of DTFT.                                              (6)

                   (i)   Time shifting, frequency shifting

                   (ii)  Conjugate symmetry

                   (iii) Time reversal.

 

             b.   Consider a stable Causal LTI system whose input  and output  are related through second order difference equation                              

                    determine the response for the given input                                                                   (10)

                                                                             

  Q.5     a.   A continuous time signal is given below

 

                                                                                                               (8)

 

                   Determine

                   (i)  Minimum sampling rate

                   (ii)  If fs=400Hz what is discrete time signal obtained after sampling.

                   (iii) If fs=150Hz what is discrete time signal obtained after sampling.                                  

 

             b.   State and prove Parsevals theorem for Continuous domain periodic signal.          (8)

 

  Q.6     a.   Compute the Magnitude and Phase of the Frequency Response of the First order Discrete time LTI system given by equation                                 (10)

                  

 

             b.   Determine the Fourier Transform of unit step                                     (6)

 

  Q.7     a.   By using convolution theorem determine the inverse Laplace transform of the following functions                                                                (8)   

                   (i)                                    (ii) 

 

             b.   Check the stability & causality of a continuous LTI system described as                  

                                                                                                          (8)

 

  Q.8     a.   Find the -Transform  and sketch the pole-zero with the ROC for each of the following sequences.                                                            (8)

                   (i) 

                   (ii)

 

             b.   Determine the inverse Transform of  if the region of convergence are (i)  (ii)   (iii)                       (8)

 

  Q.9     a.   Consider the probability density function where X is a random variable whose allowable value range from  to . Find

                   (i) Commulative distribution function

                   (ii) Relationship between a and b.

                   (iii)                                                                         (8)

                   Determine mean, mean square and Variance.

 

             b.   Find the power spectral density for the cosine signal  and also compute power in the signal.                                            (8)