Flowchart: Alternate Process: DECEMBER 2008Code: AC09/AT09                                                             Subject: NUMERICAL COMPUTING

Time: 3 Hours                                                                                                     Max. Marks: 100

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

Q.1       Choose the correct or best alternative in the following:                                         (2x10)

 

a.   The exact solution of the Initial Value Problem        is

      (A)                                         (B)                                                      

      (C)                                         (D)

 

b.   The expression       is equal to

 

      (A)                      (B)

      (C)                          (D)

 

c.   The equation        has a multiple root x = 1 of multiplicity 2. The other 2 roots will be

 

      (A) both real but different                      (B) a pair of real roots

      (C) a complex pair                                (D) one real and one complex

 

d.   Which of the following is a Composite Simpson’s Rule?

 

      (A)

      (B)

      (C)

      (D)

 

e.   The nth divided difference  of  is given by

 

      (A)                          (B)

      (C)                                   (D)

 

f.    Attempt is made to solve the system of equations  where  and by the Gauss–Jacobi iteration method.  Then, the iteration                                                                      

 

      (A) has rate of convergence 0.5634.     (B) has rate of convergence 0.235.               

      (C) has rate of convergence 1.234.       (D) diverges.

 

g.   The least squares straight line approximation to the data

                         

      is given by

 

      (A)                                            (B)                                                          

      (C)                                              (D)

 

h.   The integration formula  is to be used.  The value of  for which the method is of highest order, is given by

 

      (A) 1                                                    (B) 2/3

      (C) 1/3                                                 (D) 1/2                                                               

 

i.    The order of Newton-Raphson method     for finding out a multiple root of multiplicity 3 of the equation , is

 

      (A)  1                                                   (B)  2

      (C)  3                                                   (D)  4

 

j.    What should be the condition on  such that the method    where  ,  converges.

      (A)                                             (B)                                                           

      (C)                                             (D)  None of above

 

 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

 

  Q.2     a.   Obtain a second degree polynomial approximation to  using the Taylor series expansion about . Use the expansion to approximate  and find a bound of the truncation error.                                                                                                                                 (6)

 

b.       Use the classical Runge-Kutta fourth order method to obtain an approximate value  for the initial value problem  with .                                                        (10)

 

  Q.3     a.   How should the constant  be chosen to ensure the fastest possible convergence with the iteration formula

                   .                                                                                           (8)

 

             b.   Obtain a bound on the truncation error in linear interpolation based on the nodal points .  Determine the maximum step-size  that can be used in the tabulation of  in  so that the error in linear interpolation will be less than .                                     (8)

 

  Q.4     a.   Solve the following system of equations using the Gauss-Seidel iteration method

                  

                   with the initial approximation as  and . Perform two iterations. Find the iteration matrix and hence find the rate of convergence of the method.                                 (8)

 

a.       Use the method of least squares to fit a function of the form  to the following data

                                                                                                           (8)

  Q.5     a. Determine all the eigenvalues of the matrix , using Jacobi’s method.  (Use exact arithmetic).                                                                                                         (8)

 

             b.   The equation  has a simple root in the interval .  The function  is such that  and  for all  in .  Assuming that the Newton-Raphson’s method converges for all initial approximations in , find the number of iterations required to obtain the root correct to .                                                                                                                                   (8)

 

  Q.6     a.   Find the Lagranges interpolation polynomial which fits the following data.

                  

                   and use the same to estimate the value of .                                                       (8)

 

             b.   Use the two point Gauss-Legendre quadrature formula to evaluate .                 (8)  

 

 

  Q.7     a.   The following table of values is given

                  

                  

                   Find all the possible approximations for  using the differentiation formula .

                   Perform Richardson’s extrapolation to obtain a better estimate.                                   (8)

 

             b.   The polynomial  interpolates the first four points in the table:

                                                                                                         

                  

                   By adding one additional term to , find a polynomial that interpolates the whole of table.                                                                                 (8)

 

  Q.8     a.   Calculate  using Trapezoidal rule with number of points as 3, 5 and 9. Improve the results using Romberg Integration.                                                                                         (8)

 

             b.   Find the inverse of the matrix using the Choleski  factorization method, taking , where U is an upper triangular matrix.                                                      (8)

 

  Q.9     a.   Use Taylor’s series method of order four to obtain the approximate value of  for the initial value problem                                               .                            

                   Take the step size .                                                                                        (8)

 

             b. Perform four iterations of power method to find the largest eigen value in magnitude and the corresponding eigen vector of the matrix

                                                                                                                  

                   Take the initial approximation to the eigenvector as .                                (8)