Code: AE01/AC01/AT01                                                                  Subject: MATHEMATICS-I

Time: 3 Hours                                                                                                     Max. Marks: 100
Flowchart: Alternate Process: DECEMBER 2007

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

Q.1      Choose the correct or best alternative in the following:                             (2 x 10)

 

a.                   The value of the limit  is

 

(A)  limit does not exist             (B)  0

(C)  1                                                   (D)  -1

 

b.                  If   then the value of  is equal to

 

(A)  0                                                   (B)

(C)                                     (D)

 

c.                   If   then the value of  is

 

(A)  u                                                   (B)  2u

(C)  3u                                                 (D)  0

 

d.                  The value of integral is equal to

 

(A)  22                                                 (B)  26

(C)  5                                                   (D)  25

 

e.                   The solution of the  differential equation  is given by

 

(A)                     (B) 

(C)                       (D)


f.          The solution of the differential equation  is

(A)                     (B)

(C)                   (D)

                  

g.                   If 3x+2y+z= 0, x+4y+z=0, 2x+y+4z=0, be a system of equations then

 

(A)  system is inconsistent          

(B)  it has only trivial solution

(C)  it can be reduced to a single equation thus solution does not exist

(D)  Determinant of the coefficient matrix is zero.

 

h.         If λ is an eigen value of a non-singular matrix A then the eigen value of A-1 is

 

(A)  1/ λ                                               (B)  λ

(C)  –λ                                                 (D) –1/ λ

 

            i.          The product of the eigen values of the matrix

 is

           

(A)  3                                                   (B)  8

 

(C)  1                                                   (D)  –1

 

          j.          The value of      the integral is

 

(A)                                     (B)

(C)                             (D)

 

Answer any FIVE Questions out of EIGHT Questions.

Each Question carries 16 marks.

 

Q.2      a.         Find the extreme value of the  function   f(x,y,z) = 2x + 3y + z      such that        x2+y2=5 and x + z =1                                                                                (8)

 

b.         Show that the function  is continuous at (0,0) but its partial derivatives of first order do not exist at (0,0).                                                                                                                  (8)

 

Q.3      a.         Evaluate the integral where T is region bounded by the cone

 and the planes z=0  to z=h in the first octant.             (8)

 

b.         Show that the approximate change in the angle A of a triangle ABC due

to small changes  in the sides a, b, c respectively, is given by  where  is the area of the triangle.

Verify that                                                                         (8)

 

Q.4      a.         If  Show that

                                                                    (8)

 

b.                  Using the method of variation of parameter method, find the general  

solution of the differential equation                                      (8)

      

Q.5      a.         Find the general solution of the equation .              (8)

 

b.         Find the general solution of the equation .                                                     (8)

 

Q.6      a.         Solve                                                                     (8)

 

b.                  The set of vectors {x1, x2}, where x1 = (1,3)T, x2 = (4,6)T is a basis in R2.   Find a linear  transformations    T    such    that     Tx1   = (-2,2,-7)T and       Tx2 = (-2,-4,-10)T                                                                                                 (8)

 

Q.7      a.         Show that the matrix A is diagonalizable. .  Hence,

obtain the   matrix P such that  is a diagonal matrix.                     (8)

 

b.                  Investigate the values of λ for which the equations 

are consistent, and hence find the ratios of x:y:z when λ has the smallest of

these values.                                                                                                      (8)

 

Q.8      a.         Find the first five non-vanishing terms in the power series solution of the

initial value problem

                                                                         (11)

 

            b.         Show that                                                    (5)

 

Q.9      a.         Show that                                      (8)

 

b.         Show that        .                                        (8)