DECEMBER 2006

 

Code: D-01 / DC-01                                                                        Subject: MATHEMATICS - I

Time: 3 Hours                                                                                                     Max. Marks: 100

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

Q.1       Choose the correct or best alternative in the following:                                         (2x10)

       

a.       If one root of the equation  is  of the other root, then K is

 

                   (A)  2                                                  (B)  8

(C)    10                                               (D)  12

       

b.      The centroid of the triangle formed by the straight lines   is 

 

(A)    (0, 0)                                           (B)  (1, 0)

(C)  (0, 1)                                           (D)  (1, 1)                                                                 

 

             c.   The distance between the parallel lines 3x + 4y + 5 = 0 and 3x + 4y + 15 = 0 is

                  

(A)    1                                                  (B)  2

(C)  3                                                  (D)  5

 

             d.   , where m n is equal to

 

(A)    m                                                (B) n

(C)  m – n                                           (D) m + n  

 

             e.   If  then  is equal to   

                  

(A)     2 sin 4x                                        (B)  4 sin 2x

(C)  sin 4x                                           (D)  2 sin 2x

 

             f.    is equal to 

 

(A)                                  (B)  log

(C)  tan x + sec x                                 (D)  tan x – sec x

             g.   is equal to 

 

(A)                                                     (B) 

(C)  1                                                  (D)  0

 

             h.   The solution of the differential equation  is

 

(A)                            (B)

(C)                      (D)

 

             i.    The value of  is equal to 

 

(A)   1                                                  (B)

(C)                                               (D) zero

 

             j.    The value of  is 

 

(A)                                                 (B) 

(C)                                                  (D)

 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

  Q.2     a.   Show that the coefficient of in the expansion of  is double the coefficient of  in the expansion of .                                    (8)

       

             b.   If  and , where  then prove that .                                                            (8)

 

  Q.3     a.   If A + B + C =, show that

                       .                                             (8)

       

             b.   If a, b, c be the sides opposite to the angles A, B, C of a triangle ABC, show that  .                                                                   (8)

  Q.4     a.   Derive the formula for finding the area of a triangle whose vertices are  and .                                                                                                                         (8)

 

             b.   Find the equation of a straight line joining the point (3, 5) to the point of intersection of the lines 4x +y = 1 and 7x – 3 y = 35.                               (8)

 

  Q.5     a.   Find the equation of the circle which passes through the centre of the circle               

                    and is concentric with the circle .                   (8)

       

             b.   Find the focus, vertex, directrix and axis of the parabola .           (8)

 

  Q.6     a.   Evaluate .                                                                                     (8)

 

             b.   Find , if .                                               (8)

 

  Q.7     a.   Derive the equation of the tangent and the normal to the curve  at the point .                                                                (8)

 

             b.   Evaluate .                                                                                  (8)

 

  Q.8     a.   Find the volume of the solid of revolution obtained by revolving the ellipse  about x-axis.                                                                   (8)

            

             b.   Evaluate , for any positive integer n.                                                (8)

 

  Q.9           Solve any two of the following differential equations.

                   (i)   .

                   (ii)  .

                   (iii) .                                                                      (16)