NOTE: There are 9 Questions in all.
· Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
· Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
· Any required data not explicitly given, may be suitably assumed and stated.
Q.1 Choose the correct or best alternative in the following: (2x10)
a.       The second degree Taylor series polynomial expansion of the function 
 about x = 0 is  
   (A)  
.                       (B)  
.
 (C)  
.                            (D) 
.
b.      A root of the equation 
lies in the interval (0.5,
1.0).  The number of iterations required by the bisection method to obtain this
root correct to 2 decimal places is       
(A) 13. (B) 11.
(C) 9. (D) 7.
c.       Newton-Raphson method is used to obtain the approximate value of 
. 
If the initial approximation is taken as 
, this the value obtained after two iterations
is 
(A) 2.5. (B) 2.25.
(C) 2.2142. (D) 2.1242.
d. The homogeneous system of equations
                   
has
(A) two parameter family of solutions.
(B) one parameter family of solutions.
(C) only zero solution.
(D) no solution.
e. The spectral radius of the Gauss-Jacobi iteration method to solve the linear system of equations
                   
is
(A) 1.26. (B) 1.50.
(C) 2.00. (D) 2.50.
f. The data
                   ![]()
represents an nth degree polynomial. The value of n is
(A) 4. (B) 3.
(C) 2. (D) 1.
g. The truncation error in the method
                   
 is
(A)     
.                                    (B) 
. 
(C)  
.                                 (D) 
.
h. The value of the integral
                   
                     
using two point Gauss-Hermite method is
(A) 0.5908. (B) 1.1813.
(C) 2.0944. (D) 4.1888.
i. The value of b in the formula
                   
 is  
(A) 1. (B) 2.
(C) 4. (D) 8.
j. The approximate value of y(1.4) for the initial value problem
                   
 y(1) = 2
obtained by using the Euler’s method with h=0.2 is
(A) 2.5472. (B) 2.7596.
(C) 2.7637. (D) 2.9253.
Answer any FIVE Questions out of EIGHT Questions.
Each question carries 16 marks.
Q.2 a. Derive the secant method to determine a simple root of the equation f(x) = 0. Find its rate of convergence. (8)
             b.   Find an interval of unit
length which contains the smallest negative root in magnitude of the equation ![]()
(i) Perform two iterations of the bisection method.
(ii) Taking end points of the last interval as initial approximations, perform two iterations of the secant method. (8)
Q.3 a. Perform two iterations of the Newton’s method to solve the system of equations
                   
Take the initial approximation as (0.8, 0.9). (10)
b. Find all solutions of the system of equations
                   
using Gauss-elimination method. (6)
Q.4 a. Set up the Gauss-Seidel iteration method in matrix form to solve the linear system of equations
                   
Find its rate of convergence, if the method is convergent. (8)
b. Find the inverse of the matrix
                   
using Choleski method. (8)
Q.5 a. Using five iterations of the inverse power method, find the eigenvalue which is nearest to 4 in magnitude for the matrix.
                   
                   Take
the initial approximate eigenvector as 
.                            (8)
b. Using Given’s method, reduce the matrix
                
  
to tri-diagonal form. Obtain the Sturm’s sequence and hence all the eigenvalues. (8)
Q.6 a. Prove the following operator relations
                     (i)   ![]()
                     (ii)  
                                                                                  (4)
b. Using Newtonts divided difference interpolation, obtain the polynomial
which fits the data
                    
                                                               (6)
             c.   Obtain
the least squares approximation of the form 
 for the data
                   
                                                                 (6)                       
Q.7   a.  Obtain the maximum
absolute truncation error 
 and the maximum 
              absolute round
off error 
 in
the method
             ![]()
where
             (i)   
 for all i
             (ii)  
 is the maximum
round off error in evaluating y(x) for all x
             (iii) 
 for all x in the
given interval.
             Determine the
optimal value of h so that 
.                                                (8)                                                                                                                 
b. Obtain the Richardson’s extrapolation scheme for the method
               ![]()
Using this method and Richardson’s extrapolation, find the best value of
               
 using the data
               
                        (8)
Q.8 a. Find the minimum number of intervals required to evaluate
               
 using the Simpson’s rule with an
accuracy of 
.                        
(8)                     
        b.    Obtain the values of the constants 
 and 
 in the method 
               
               where 
 is the weight function, so
that the method is of highest possible 
order. Find the order and the error term of the method. (8)
Q.9 a. Solve the initial value problem
               ![]()
in the interval [1, 1.4] using the classical fourth order Runge-Kutta method with h=0.2. (8)
b. Using the multi-step method
               ![]()
with h = 0.2, obtain the approximate value of y(1.8) for the initial value problem
                                                                                    
Find the starting values using the Euler method with h = 0.2 (8)