Flowchart: Alternate Process: DECEMBER 2006
 

 


Code: A-06/C-04/T-04                                                               Subject: SIGNALS & SYSTEMS

Time: 3 Hours                                                                                                    Max. Marks: 100

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

Q.1       Choose the correct or best alternative in the following:                                         (2x10)

a.       Given a unit step function u(t), its time-derivative is :
(A)  a unit impulse.                                                                                                           

                   (B)  another step function.

(C)  a unit ramp function.                    

(D)  a sine function.

b.      The impulse response of a system described by the differential equation

       will be

                                                                                                                                             

(A)    a constant.                                    (B)  an impulse function.

(C)  a sinusoid.                                    (D)  an exponentially decaying 

                                                                  function.                                                              

             c.   The function   is denoted by:          

(A)    .                                    (B)  sinc (u).

(C)  signum.                                         (D)  none of these.

 

             d.   The frequency response of a system with  is given by 

(A)    .                          (B)  .

(C)  .                          (D)  .       

             e.   The order of a linear constant-coefficient differential equation representing a system refers to the number of                                                                 

(A)     active devices.                              (B)  elements including sources.     

(C)  passive devices.                            (D)  none of these.

             f.    z-transform converts convolution of time-signals to

(A)     addition.                                       (B)  subtraction.

(C)  multiplication.                               (D)  division.

             g.   Region of convergence of a causal LTI system

(A)     is the entire s-plane.                      (B)  is the right-half of s-plane

(C)  is the left-half of s-plane.               (D) does not exist.

             h.   The DFT of a signal x (n) of length N is X(k). When X (k) is given and x(n) is computed from it, the length of x(n)

                                                                                                         

(A)    is increased to infinity                    (B)   remains N                                                                                               

(C)  becomes 2N-1                             (D)  becomes N2                             

                                                                                                                        

 

             i.    The Fourier transform of u (t) is

(A)                                              (B) .

(C) .                                      (D) none of these.

             j.    For the probability density function of a random variable X given by , where  is the unit step function, the value of K is

(A)                                                  (B)      

(C) 25                                                 (D) 5

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

  Q.2     a.   Find the complex Fourier coefficients for the periodic  signal : .  Using Parseval’s theorem, evaluate the average power.                                                               (8) 

 

             b.   Determine :

(i)                  the odd and even parts of the signal: .

(ii)                the output , given .            (4+4)

       

  Q.3     a.   Find the FT of the continuous-time signal shown in Fig.1.                                    (8)

 
 

 

 

 


                                                                 

                                                                                                                                                

             b.   Find :

                   (i)  the convolution of , given

                                  .

                   (ii)  whether the system with impulse response  is causal and stable.                                                                       (4+4)                                                                                

  Q.4     a.   A continuous-time signal is shown in Fig.2.  Find its FT.                                      (8)  

 
                                                                                                                                                

 

 

 

 

 

 

 

 

 

 

 

 

       

 

 

 

             b.   Determine:

(i)                  the FT of

(ii)                the time-signal x (n), whose DFT is {1,1}                                           (4+4)

 

 

  Q.5     a.   The input to a discrete-time system is given by: . The impulse response of the system is specified as follows:              

                        (in  period)

                   Obtain the output y(n) using the convolution property of DTFT.                        (12)

            

             b.    Show that  if .                                      (4)

  Q.6     a.   Use z-transform to determine the impulse response of the system described by the difference equation: .              (8)

             b.   Find:

(i)                  the value of the DTFT for   for the signal: .

(ii)                the Laplace transform and Fourier transform of the function , and the z-transform and DTFT for .                                                 (4+4)

  Q.7     a.   Use the Laplace transform to determine the output of the system represented by the differential equation: 

                   .                                  (12)   

 

             b.   Show that:

.                                                                              (4)

 

 
  Q.8     a.   From the pole-zero plot in z-plane (Fig.5), identify all valid RoCs for X(z) and specify the characteristics of the time-signal corresponding to each RoC.                                                                        (8)

 

 

 

 

 

 

             b.   (i) Given , show that n .

                   (ii)  A signal  is ideally sampled at intervals of  seconds to obtain .  Find the maximum allowable value for .  To reconstruct the signal without distortion, find the minimum filter bandwidth required when  is passed through a rectangular low-pass filter.                  (4+4)

  Q.9     a.   Explain the terms: continuous and discrete random processes; deterministic and non-deterministic random processes; stationary and non-stationary random processes; and ergodic and non-ergodic random processes.                                           (8)

 

             b.   Consider a stationary random process that has a spectral density : .  Express  as  and then determine the mean-square value of this process. (8)