ROLL NO. _____

Subject: LOGIC DESIGN

DiplETE – ET/CS (Current & New Scheme)

Time:	3 Hours	DECEMBER 2	018	Max. Marks: 100
PLEAN IMME NOTE • Qua the • The the	SE WRITE YOUR DIATELY AFTER There are 9 Quest estion 1 is compulse espace provided for e answer sheet for the commencement of t of the remaining estion carries 16 ma	ROLL NO. AT THE SPACE RECEIVING THE QUESTE tions in all. bry and carries 20 marks. A t it in the answer book supply he Q.1 will be collected by the the examination. g EIGHT Questions answer arks.	<i>PROVID</i> <i>ON PAPE</i> nswer to (ied and no he invigilat er any F!	DED ON EACH PAGE R. Q.1 must be written in owhere else. tor after 45 minutes of IVE Questions. Each
• Any Q.1	y required data not	explicitly given, may be suit	$\frac{1}{2}$ ably assur	$\frac{1}{2} \times 10^{\circ}$
	a. The binary equi (A) 1010101.10 (C) 1010111.10	valent of $(85.63)_{10}$ is 100 (B) 100 (D)	1110101.1(1010101.1)100 1100
	 b. BCD code 0101 (A) 52 (C) 256 	0011 represents decimal num (B) (D)	ber 53 51	
	 c. A Karnaugh ma (A) 2 cells (C) 8 cells 	p with 4 variables has(B) (D)	 4 cells 16 cells	
	d. A memory that a(A) ROM(C) DRAM	requires refreshing is(B) (D)	 SRAM Flash RAN	1
	 e. The sum of proc (A) AB + AC' (C) AB + AC 	duct of (A + B'C)(B + C'A) is (B) (D)	AC + BC AC + B'C	·
	 f. In a 7 segment c displayed is (A) 9 (C) 1 	lisplay, LEDs a, b and c light (B) (D)	up. The dee 7 3	cimal number
	g. A multiplexer h (A) 5 (C) 4	aving 32 data input lines need (B) (D)	s 3 8	_ select lines.
	 h. In general the number of the flip-flops. (A) 1/2ⁿ (C) 2n 	umber of states =, v (B) (D)	vhere n is e 2 ⁿ n ²	equal to the number of
	i. A 4 bit modulo- each flip –flop i equal to (A) 2.5 MHz	16 ripple counter uses JK flip s 100 nsec, the maximum clos (B)	-flops. If th k frequenc 5 MHz	ne propagation delay of by that can be used is

1

ROLL NO. _____

Code:	DE58/DC58/DE108/DC108
-------	-----------------------

Subject: LOGIC DESIGN

	j.	An 8 bit data is to be entered into a parallel in register. The number of clock pulses required is			
		(A) 2 (C) 4	(B) 1 (D) 8		
		Answer any FIVE Questions out Each question carries	of EIGHT Questions. 16 marks.		
Q.2	a.	What is a Digital System? Explain the advantages and limitations of Digital Techniques over Analog Techniques.			
	b.	Perform the following conversions. (i) $(111101.011)_2 = ()_{10}$ (iii) $(68B)_{16} = ()_8$	(ii) $(5267)_8 = ()_{10}$ (iv) $(1A2.C) = ()_{10}$	(
Q.3	a.	. Show, that how NAND and NOR gates are universal gates?			
	b. Obtain (i) minimal sum of product (ii) minimal product of sum express function $F(A, B, C, D) = \Sigma (0, 2, 3, 6, 7, 8, 10, 11, 12, 15)$.				
Q.4 a.		Draw and explain the operation of JK Flip Flop with the help of logic diagram. Also draw its truth table and timing diagram.			
	b.	Explain the application of Flip-Flop as a	Shift Register using D Flip-Flops.	(8	
Q.5	a.	 Build a Full Adder using two Half Adders and prove that the addition of two numbers results in subtraction when 2's complement is used. 			
	b.	Perform followings using 2's compleme (i) $(01001)_2 - (10100)_2$ (ii) $(100101)_2 - (100100)_2$	nt method.	(4	
	c.	Draw the circuit diagram of 8 bit paralle	l adder.	(4	
Q.6	a.	. What is a Ripple Counter? Draw the logic diagram of 3-bit Ripple Counter explain its working with the help of timing diagram.		(8	
	b.	. Design 4 bit up/down binary ripple counter.			
Q.7 a.		Design a BCD to excess 3 code converter using minimum number of NAND gates.			
	b.	Design a seven segment decoder that is a segment display.	required to drive an active low seven	(8	
Q.8	a.	Design a mod 7 synchronous counter and calculate its maximum frequency of operation if the flip flop delay time is 8 nano sec and gate delay time is 5 nan sec.			
	b.	Design 4 bit (serial In/Parallel out shift r relevant diagram after 5 clock pulses.	egister), write the truth table with	(8	
Q.9	a.	How will you read and write into a 16×4 RAM? Draw a schematic of this RAM and explain the process.			
	b.	Design a combinational circuit using a R generates an output binary number equa	OM that accepts a 3-bit number and to the square of the input number.	(8	