ROLL NO.

Code: DE55/DC55

Subject: ENGINEERING MATHEMATICS - II

DiplETE – ET/CS (Current Scheme)

Time: 3 Hours

DECEMBER 2018

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Q.1 Choose the correct or the best alternative in the following:
 - a. The value of $\lim_{x \to \infty} \frac{\log x}{x}$ is (A) 2 (B) -1 (C) 1 (D) 0
 - b. If f(x) = f(2a x), then $\int_{0}^{2a} f(x) dx$ is equal to (A) $\int_{a}^{0} f(2a - x) dx$ (B) $2\int_{0}^{a} f(x) dx$ (C) $-\int_{0}^{a} f(x) dx$ (D) 0
 - c. The particular Integral of the differential equation $(D^2 + 4)y = \cos 2x$
 - (A) $\frac{x}{4}\cos 2x$ (B) $-\frac{x}{4}\cos 2x$ (C) $\frac{x}{4}\sin 2x$ (D) $-\frac{x}{4}\sin 2x$

d. The value of 'c' for which the Rolle's theorem is applicable for the function $f(x) = x^2 - 6x - 8$ in the interval [2, 4] is (A) 3 (B) 2.5 (C) 2.4 (D) None of these

e. If $\vec{A} = 4i + 3j + k$, $\vec{B} = 2i - 2j + 2k$, then the unit vector perpendicular to both \vec{A} and \vec{B} is (A) $8i + 6j - 14k/\sqrt{296}$ (B) $8i - 6j - 14k/\sqrt{296}$ (C) $8i + 6j + 14k/\sqrt{296}$ (D) $8i - 6j + 14k/\sqrt{296}$

1

ROLL NO.

Code: DE55/DC55

Subject: ENGINEERING MATHEMATICS - II

- f. The value of $|A \times B|^2 + |A \bullet B|^2$ is equal to
 - (A) $|A|^2 |B|^2$ (B) 2|A| |B|(C) 4|A| |B| (D) $4|A|^2 |B|^2$
- g. The real part of $(\sin x + i \cos x)^5$ is (A) $-\cos 5x$ (B) $-\sin 5x$ (C) $\sin 5x$ (D) $\cos 5x$
- h. If $f(x) = x^2$, in -2 < x < 2, f(x + 4) = f(x), then a_n is equal to (A) $\int_{0}^{2} x^2 \sin \frac{n\pi x}{2} dx$ (B) $\int_{0}^{2} x^2 \cos \frac{n\pi x}{2} dx$ (C) $\int_{0}^{4} x^2 \cos \frac{n\pi x}{2} dx$ (D) $\int_{0}^{4} x^2 \sin \frac{n\pi x}{2} dx$
- i. If value of $L\{F(t)\} = f(s)$, then $L\{(\sinh at)F(t)\}$ is equal to (A) $\frac{1}{2}[f(s-a) - f(s+a)]$ (B) $\frac{1}{2}[f(s-a) + f(s+a)]$ (C) $-\frac{1}{2}[f(s-a) - f(s+a)]$ (D) $\frac{1}{2}[f(s+a) - f(s-a)]$
- j. The maximum value of $L^{-1}\left\{\frac{1}{(s-a)^2+b^2}\right\}$ is equal to (A) $e^{at} \sin bt$ (B) $e^{at} \cos bt$ (C) $\frac{1}{b}e^{at} \sin bt$ (D) $\frac{1}{b}e^{at} \cos bt$

Answer any FIVE questions out of EIGHT Questions. Each Question carries 16 marks.

Q.2	a. Use Maclaurin's series, expand $\tan x$ upto the term containing x^5 .	(8)
	b. Find the value of a and b such that $\lim_{x \to 0} \frac{x(1 + a \cos x) - b \sin x}{x^3} = 1.$	(8)
Q.3	a. Find the area of the segment cut off from the parabola $x^2=8y$ by the line $x - 2y + 8 = 0$.	(8)
	b. Evaluate $\int_0^{\frac{\pi}{2}} \sin^4 x \cos^6 x dx$.	(8)

ROLL NO.

(8)

(8)

Code: DE55/DC55

Subject: ENGINEERING MATHEMATICS - II

Q.4 a. Express
$$\left[\frac{2-\sqrt{3}i}{1+i}\right]$$
 in the form $a+ib$ and find its modulus and amplitude. (8)

b. If *n* is positive integer, prove that $(\sqrt{3} + i)^n + (\sqrt{3} - i)^n = 2^{n+1} \cos\left(\frac{n\pi}{6}\right)$, (i= $\sqrt{-1}$)

- **Q.5** a. Show that the points -6i+3j+2k, 3i-2j+4k, 5i+7j+3k and -13i+17j-k are coplanar.
 - b. A particle acted on by, constant forces 4i+j-3k and 3i+j-k is displaced from the point i+2j+3k to the point 5i+4j+k. Find the total work done by the forces. (8)

Q.6 a. Solve the differential equation
$$\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = e^{-x} + \sin 2x.$$
 (8)

b. Solve the differential equation
$$\frac{d^2 y}{dx^2} - 3\frac{dy}{dx} + 2y = xe^{3x} + \cos 2x.$$
 (8)

Q.7 a. Find the fourier series expansion of $f(x) = 2x - x^2$ in the interval $0 \le x \le 2$. (8)

b. Obtain the fourier expansion of $f(x) = x \sin x$ as a cosine series in $(0, \pi)$. (8)

Q.8 a. Find the Laplace transform of
$$[t^3 e^{-2t} \sin 4t]$$
. (8)

b. Find the Laplace transform of
$$\left[\frac{\cos at - \cos bt}{t}\right]$$
. (8)

Q.9 a. Apply Convolution theorem to evaluate
$$L^{-1}\left[\frac{1}{s^2(s^2+9)}\right]$$
. (8)

b. Using Laplace transform, solve the differential equation Y'' + 4Y' + 4Y = 0, given that Y(0) = 0 and Y'(0) = 1. (8)