ROLL NO.

Code: DE51/DC51/DE101/DC101 Subject: ENGINEERING MATHEMATICS - I

DiplETE – ET/CS (Current & New Scheme)

Time: 3 Hours

DECEMBER 2018

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a.	If $n_{C_{10}} = n_{C_8}$	then $n_{C_{16}}$ is equal to	
	(A) 153		(B) 151
	(C) 157		(D) 155

b. If the 7th and 13th term of a progression is 23 and 41 respectively, then the 21st term is

(A) 65	(B) 60
(C) 55	(D) 50

- c. If $2\sin^2 x = 3\cos x$ then **x** is (A) 60° (B) 50° (C) 40° (D) 30°
- d. The value of √3cosec 20⁰ sec20⁰ is
 (A) 4
 (B) 5
 (C) 6
 (D) 7
- e. If the distance between the points (x, -7), (3, -3) is 5 unit, The value of x is
 (A) 0
 (B) 0 or 6
 (C) 6
 (D) None of these
- f. The length of the perpendicular from the straight line x 2y 5 = 0 drawn from the point (-3,-5) is

$(\mathbf{A})\frac{1}{\sqrt{5}}$	(B) 2 5
3	4
(C) \[5	(D) √5

g. The area of the triangle with vertices (-3, 5), (3, -6), (7, 2) is
(A) 41 units
(B) 40 units
(C) 46 units
(D) 45 units

ROLL NO.

Code: DE51/DC51/DE101/DC101 Subject: ENGINEERING MATHEMATICS - I

h. $\left(\frac{dx}{dy}\right)^2 + 5\sqrt[n]{y} = x$ is (A) linear of degree 2 (B) non-linear of order 1 and degree 2 (C) non-linear of order 1 and degree 6 (D) None of these i. The function $f(x) = \begin{cases} x \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ is (A) discontinuous at x = 0 (B) $Lt_{x \to 0} f(x)$ does not exists (C) continuous at x = 0 (D) None of these j. The value of $\int_0^1 \frac{1-x}{1+x} dx$ is (A) 2log2 - 1 (B) log2(C) log2 - 1 (D) 2log2

Answer any FIVE Questions out of EIGHT Questions. Each Question carries 16 marks.

Q.2 a. Using the principle of mathematical induction, prove that $(2n + 7) < (n + 3)^2$ for all values of $n \in N$. (8)

b. If
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$
 then show that
 $C_0^2 + C_1^2 + C_2^2 + C_3^2 + C_4^2 + \dots + C_n^2 = \frac{(2n)!}{n!n!}.$
(8)

Q.3 a. If
$$A + B + C = \pi$$
, show that $\cos A + \cos B + \cos C = 1 + 4 \frac{\sin A}{2} \frac{\sin B}{2} \frac{\sin C}{2}$. (8)

b. Prove that
$$\left(\frac{\cos A + \cos B}{\sin A - \sin B}\right)^n + \left(\frac{\sin A + \sin B}{\cos A - \cos B}\right)^n = \begin{cases} 2\cot^n\left(\frac{A - B}{2}\right), & \text{if } n \text{ is even} \\ 0, & \text{if } n \text{ is odd} \end{cases}$$
 (8)

- Q.4 a. If the area of a triangle formed by the straight line L and the coordinate axis is 5 unit where L is perpendicular to the straight line 5x y = 1, find the equation of the straight line L. (8)
 - b. The inclination of a straight line passing through the point (4, 5) is 30°. Find the coordinate of the point lying on that line whose distance from the given point is 3 unit.
- Q.5 a. Solve the following systems of linear equations by matrix method. 5x - 7y + z = 11, 6x - 8y - z = 5, 3x + 2y - 6z = 7. (8)

b. Given
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
 show that $A^2 - 4A - 5I = 0$. Hence find A^{-1} . (8)

ROLL NO.

Code: DE51/DC51/DE101/DC101 Subject: ENGINEERING MATHEMATICS - I

Q.6	a. Solve: $(x^2 - y^2)dx = 2xydy$.	(8)
	b. Solve: $(x^2y - 2xy^2)dx = (x^3 - 3x^2y)dy$.	(8)

Q.7 a. Evaluate
$$\int_{\alpha}^{\beta} \sqrt{(x-\alpha)(\beta-x)} dx.$$
 (8)

b. Integrate
$$\int tan^{-1}(1+x+x^2)dx$$
. (8)

Q.8 a. Find the nth derivative of
$$\frac{1}{x^2 + a^2}$$
. (8)

b. Find the values of *a* and *b* such
$$Lt_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3} = 1.$$
 (8)

Q.9 a. Find the equation of the parabola whose focus is at (-1, 1) and directrix is
$$x + y + 1 = 0$$
. (8)

b. If e and e' are the eccentricities of two conjugate hyperbola prove that $\frac{1}{e^2} + \frac{1}{e'^2} = 1.$ (8)