ROLL NO. _

Subject: NETWORKS & TRANSMISSION LINES

DiplETE – ET (New Scheme)

Time: 3	Hours	DECEMBER 2018	Max. Marks: 10			
PLEASE IMMEDI	NATINE YOUR	ROLL NO. AT THE SPACE PR	OVIDED ON EACH PAGE R.			
NOTE: 7	There are 9 Questic	ns in all.				
Quest space	tion 1 is compulso e provided for it in	ry and carries 20 marks. Answer t the answer book supplied and nowh	o Q.1 must be written in the			
• The a	answer sheet for th	e Q.1 will be collected by the invig	ilator after 45 minutes of the			
comr	mencement of the e	xamination.				
• Out (of the remaining . les 16 marks	EIGHT Questions answer any FIV	/E Questions. Each question			
• Any r	required data not e	xplicitly given, may be suitably assu	ned and stated.			
$\overline{01}$	- Choose the correct	or the best alternative in the followi	ng: (2×10)			
Q.1	a. In Z- parameter	representation if $Z_{21}=Z_{12}$, the network	ork is: (2×10)			
	(A) Bilateral	(B) Symme	trical			
	(C) Balanced	(D) Inverse				
1	b. Bridged T-netw	ork can be used as				
	(A) Attenuator	(B) Low pa	ss filter			
	(C) High pass f	ilter (D) Band pa	ass filter			
	c. The time consta	nt of a series R-C circuit is:				
	(A)RC	(B) R/C				
	$(\mathbf{C}) \mathbf{R}^{2} \mathbf{C}$	$(\mathbf{D}) \mathrm{RC}^2$				
	d. A resonance cu	rve for a series circuit is a plot of fr	equency verses			
	(A) Voltage	(B) Impeda	nce			
	(C) Current	(D) Reactar	nce			
(e. The Inverse Laplace transform of $2/(s+1)$ is					
	(A) $2(t+1)$	(B) $2e^{-2t}$				
	(C) e^{-2t}	(D) $2e^{-t}$				
t	f. Terminating half sections used in composite filters are built with the following.					
	(A) m=0.6	(B) m=0.8	C C			
	(C) m=0.3	(D) m=1				
	g. A transmission	line works as				
	(A) Attenuator	(B) LPF				
	(C) HPF	(D) Neither	of these			
]	h. Propagation constant in a lossless line in given by					
	(A)L/C	(B) LC				
	(C)jw \sqrt{LC}	(D) $1/\sqrt{LC}$				

		ROLL NO
Code: DE107	Subject: NETWORKS &	TRANSMISSION LINES
i. VSWR in a transn	nission line lies between	
(A) 0 to ∞	(B) 1 & ∞	
(C) 0 and 1	$(\mathbf{D}) 0 \text{ and } Z_0$	
j. The reciprocity th	eorem applies to only one of the n	etwork.
(A) Bilateral n/w o	only (B) Linear as	s well as non linear
(C) Linear Bilater	al (D) None of	these
Answer an	y FIVE Questions out of EIGHT Each question carries 16 marks.	Γ Questions.

Q.2 a	a.	Explain Millman Theorem	n with the help of suitable example.	(8)
-------	----	-------------------------	--------------------------------------	-----

b. Find the current in the 10hm resistor of fig 1 using Norton's theorem. (8)

Fig. 1

Q.3	a.	Explain the Laplace transform of singularity function with an example?	
	b.	Explain initial & final value theorem.	(4)
	c.	Explain convolution theorem.	(4)
Q.4	a.	Explain the condition of reciprocity in two port representation.	(8)
	b.	In a two port network Z_{11} = 100 Ω , Z_{21} =120 Ω Z_{12} =120 Ω and Z_{22} =50 Ω , compute Y-parameters.	(8)
Q.5	a.	Explain in detail about secondary constants of transmission line.	(8)
	b.	A line has following primary constants per km loop R=26 Ω L=16mH C=0.2 μ F G=5 μ mho Find the characteristic impedance at w =7500 rad/sec.	(8)

		ROLL NO	
Code: DE107 Subject: NETWORKS & TRANSMISSION LIN			
Q.6	a.	Derive an expression for the input impedance of a lossless line. ((8)
	b.	 A low loss transmission line has characteristic impedance of 80Ω and is terminated by another impedance of (110-j70)Ω. Find (i) Reflection Co-efficient (ii) Standing wave Ratio 	(8)
Q.7	a.	Derive a relation between VSWR and reflection co-efficient in ultra high frequency lines.	(8)
	b.	What are the advantages of double stub matching over single stub matching? ((8)
Q.8	a.	Explain in detail balanced and unbalanced attenuator with example.	(8)
	b.	Design an m-derived T section Low pass filter having cut off frequency $f_c=8 \text{ kHz}$, design impedance $R_o = 600 \Omega$ and frequency of infinite attenuation $f_{\infty}=10 \text{ kHz}$?	(8)
Q.9	a.	Drive expression between resonance frequency and Q in terms of lover and upper frequencies of a series RLC Network.	(8)
	b.	A 150 mH inductor with 500 Ω self resistance is in parallel with 5 nF capacitor. Find recourse frequency of the circuit.	(8)