ROLL NO. ____

Code: DE105/DC105

Subject: ENGINEERING MATHEMATICS II

DiplETE – ET/CS (New Scheme)

Time: 3 Hours

DECEMBER 2018

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:		(2×10)
a. The value of $\lim_{x\to 0} \frac{\log x}{\log x}$	e of $\lim_{x\to 0} \frac{\log x}{\log x}$ is	
(A) 2	(B) 3	
(C) 1	(D) 0	
b. The value of $\int_{0}^{\pi/2} Sin^{6} x dx$	is	
(A) $3\pi/12$	(B) $5\pi/32$	
(C) $7\pi/13$	(D) $\pi/12$	
c. If $z = 1 + i$ then z^2 is		
(A) 5i	(B) 4i	
(C) 2i	(D) 3i	
d. If $A = 2i + j + k$, $B = 3i$	$i+2j+k$, then $ A \times B $ is	
(A) √178	(B) √179	
(C) √168	(D) None of these	
e. The series $\sqrt{1/4} + \sqrt{2/6}$	$+\sqrt{3/8}+\sqrt{n/2(n+1)}$ is	
(A) divergent	(B) convergent	
(C) oscillating	(D) none of these	
f. The solution of the differe	ential equation $\frac{d^2 y}{dx^2} - 8\frac{dy}{dx} + 15y = o$ is	
$(\mathbf{A}) \ y = c_1 e^{3x} + c_2 e^{5x}$	$(\mathbf{B}) \ y = c_1 e^{3x} - c_2 e^{5x}$	
$(\mathbf{C}) \ y = c_1 e^{3x} + c_2 e^{4x}$	$(\mathbf{D}) \ y = c_1 e^{4x} + c_2 e^{5x}$	

Code: DE105/DC105

Subject: ENGINEERING MATHEMATICS II

	g. The complementry function of <i>L</i>	$D^2 x + 4Dx + 5y = 0$	
	$(\mathbf{A}) e^{-2x} (A \cos x + B \sin x)$	$(\mathbf{B}) e^{-2x} (A\cos x - B\sin x)$	
	(C) $e^{-4x}(A\cos x + B\sin x)$	$(\mathbf{D}) \ e^{-5x} (A\cos x - B\sin x)$	
	h. The Laplace transform of $1/\sqrt{t}$ is		
	(A) $\sqrt{\pi/4s}$	(B) $)\sqrt{\pi/2s}$	
	(C) $\sqrt{\pi/s}$	(D) $-\sqrt{\pi/s}$	
	i. The value of $L^{-1}\left\{\frac{1}{\sqrt{s}}\right\}$ is		
	(A) - $1/\sqrt{\pi t}$	(B) $2/\sqrt{\pi t}$	
	(C) $1/\sqrt{\pi t}$ i The particular integral of (D ² -2)	(D) $3/\sqrt{\pi t}$ (D) $y = e^x \cos r$ is	
		1 x	
	(A) $\frac{1}{2}e^{-x}\cos x$	(B) $\frac{1}{2}e^x \cos x$	
	(C) $\frac{1}{2} e^{-x} \sin x$	(D) $\frac{1}{2}e^{x}\sin x$	
	Answer any FIVE Ques Each question	tions out of Eight Questions. carries 16 marks.	
Q.2	a. Expand tan x by Maclaurin's	s series upto the torn containing x^4 .	(8)
-	b. Evaluate $\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}$	-	(8)
Q.3	a. Evaluate $\int_0^{\frac{\pi}{6}} \cos^5 \theta d\theta$		(8)
	b. Find the area of the surface revol	lution formed by revolving the curve	
	$r = 2a\cos\theta$ about the initial lin	e.	(8)
Q.4	a. Express $(1+\cos\theta + i\sin\theta)$ in mo	odulus - arguments form.	(8)
	b. The admittance and current are respectively. Find the voltage of	e given the complex number 7+5j and the current.	17-16j (8)
Q.5	a. Show that the vector 2i-j+k, i angled-triangle.	-3j-5k and $3i - 4j$ -4k form the sides of a	a right (8)
	 b. A rigid body is rotating with a OR where R is 2i-2j +k and O 3i +2j -k on the body. 	angular velocity 2 radians/sec about an a is the origin. Find the vector of the poi	axis nt (8)

ROLL NO. _____

Code: DE105/DC105

Q.6 a. Solve
$$\frac{d^2 y}{dx^2} - 4y = (1 + e^x)^2$$
 (8)

b. A voltage E e^{-at} is applied at t = 0 to an LR circuit. Find the current at any time t. (8)

Q.7 a. Test for the absolute convergence of the series
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\log n)^2}$$
. (8)

- b. Test for the convergence of the series $1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \dots + \frac{x^n}{n^2 + 1}$. (8)
- Q.8 a. Find the Laplace transform of $f(t) = \sin at \sin bt$. (8) b. Find the Laplace transform of $\frac{1-\cos t}{t^2}$ (8)

Q.9 a. Find the inverse Laplace transform of
$$\log \frac{s+1}{s-1}$$
. (8)

b. Using convolution theorem find
$$L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$$
 (8)