ROLL NO.	
RULL NU.	

Code: DC57/DC107 Subject: COMPUTER ORGANIZATION

DiplETE - CS (Current & New Scheme)

Time: 3 Hours DECEMBER 2018 Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

 question carries 16 marks. Any required data not explicitly given, may be suitably assumed and stated. 					
Q.1	Choose the correct or the best alternative in the following: (2×1)				
	a. During the execution of the instruction, a copy of the instruction is placed in the				
	(A) Cache	(B) RAM			
	(C) System heap	(D) Register			
	b. The return address of the sub-routing	e is pointed by			
	(A) IR	(B) PC			
	(C) MAR	(D) Special memory register			
	c. When generating physical address from logical address the offset address is in				
	(A) Transaction look – aside buffer(C) Shift Register	(B) Relocation register(D) Page table			

- d. While using the iterative construct (branching) in execution. Which instruction is used to check the condition
 - (A) Test & Set (B) Branch

(C) Test condition (D) None of these

- e. An optimizing compiler does
 - (A) Better combination of given piece of code
 - (B) Takes advantage of the type of processor and reduces it's process time
 - (C) Does better memory management
 - (**D**) Both (**A**) & (**C**)
- f. Which method is used to map logical address of variable length onto physical memory?
 - (A) Paging

(B) Overlays

(C) Segmentation

(**D**) Paging with segmentation

ROLL	NO.		

Code: DC57/DC107

Subject: COMPUTER ORGANIZATION

	g.	X 4 with enable lines needed to construct a 16k X 16 RAM from 1k X 8 RAM is (A) 4 (B) 6	
		(C) 5 (D) 7	
	h.	DMA operation needs (A) I/O bus	
		(B) a switch login between the I/O and system bus	
		(C) no processor control signal(D) control signal such that DMA is after the processor accepts the hold reque	est
		and sends hold acknowledgement	CSC
	i.	When a device interrupts, the processor finds the service routine address processing from the	for
		(A) Interrupt vector start address(B) Processor program already under execution	
		(C) Interrupt vector location defined as per the device number(D) Device control register	
		(D) Device control register	
	j.	When 1101 is used to divide 100010010 the remainder is (A) 101 (B) 11	
		(C) 0 (D) 1	
		Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.	-
Q.2	a.	Explain different functional units of a digital computer.	(6)
	b.	What is bus? Explain single bus structure architecture. Explain its advantage.	(5)
	c.	What is Instruction and Instruction Sequencing? Explain Register Transfer Notation and Assembly Language Notation in brief.	(5)
Q.3	a.	What is an addressing mode? Explain different types of addressing mode.	(8)
	b.	Explain with example, usage of stack in nested subroutine calls.	(8)
Q.4	a.	What is interrupt? What is interrupt service routine? Define hardware and software interrupt.	(8)
	h	Define different modes of Data transfer	(8)
	υ.	(i) Programmed I/O	(0)
		(ii) Interrupt driven I/O (iii) Direct memory Access	
Q.5	a.	Explain serial port and serial interface.	(8)
	b.	What is USB? Explain USB architecture in detail.	(8)
_		107/Dec 2010	

ROLL NO.	
RULL NU.	

Code: DC57/DC107

Subject: COMPUTER ORGANIZATION

Q.6	a. Give comparison between SRAM & DRAM.	(8)
	b. Explain the secondary storage and explain working principle of magnetic disk.	(8)
Q.7	a. Draw and explain virtual memory organization.	(8)
	b. Discuss direct mapped, associative mapped and set associative mapped cache memory system with suitable diagram.	(8)
Q.8	a. Give Booth algorithm to multiply two binary numbers. Explain the working of algorithm taking an example.	(8)
	b. Explain IEEE standard floating point numbers.	(8)
Q.9	a. Explain the hard wired control approach and micro-programmed control unit.	(8)
	b. Define the characteristics of RISC and CISC.	(8)