ROLL NO.	

Code: DC54/DC104 Subject: DATA STRUCTURES

DiplETE - CS (Current & New Scheme)

Time: 3 Hours

DECEMBER 2018

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

• All	y required data not explicitly gr	ven, may be suitably assumed and stated.	
Q.1	Choose the correct or the best alternative in the following:		(2×10)
	a. The memory address of the f(A) floor address(C) First address	irst element of an array is called (B) foundation address (D) base address	
	b. Which of the following data(A) linear Array(C) Both (A) and (B)	structure is indexed structure? (B) linked list (D) None of these	
	c. A data structure where elements in the middle is(A) linked list	ents can be added or removed at either end but (B) stacks	not

- (C) queues(D) dequed. Which of the following is not the required condition for binary search
 - (A) The list must be sorted.

algorithm?

- **(B)** There should be the direct access to the middle element in any sub-list.
- (C) There must be mechanism to delete and/or insert element in list.
- **(D)** Binary search algorithms not efficient when the data elements are more than 1000.
- e. Which of the data structure is needed to convert infix notations to postfix notations?
 - (A) Stack (B) Queue (C) Tree (D) Graph
- f. Which of the following ways can be used to represent a graph?
 - (A) Adjancy list

(B) Adjancy Matrix

(C) Incidence matrix

- (**D**) All of these
- g. The operation of processing each element in the list is known as
 - (A) Traversal

(B) Inserting

(C) Merging

(**D**) Sorting

Code: DC54/DC104

Subject: DATA STRUCTURES

	h. The depth of a complete bi (A) D _n = nlog ₂ n (C) D _n = log ₂ n	nary tree is given by (B) $D_n=n\log_2 n+1$ (D) $D_n=\log_2 n+1$	
	· , &-	the will yield a sorted listing of elements of tree in (B) AVL tree (D) Binary Search Tree	
	j. The data structure required(A) queue(C) array	for breadth first traversal on a graph is (B) stack (D) None of these	
	•	Questions out of EIGHT Questions. estion carries 16 marks.	
Q.2	a. What is the difference between register variables?	veen static and dynamic memory allocation? Explain	(8
	b. What do you understand by	y recursion? Explain through suitable example.	(8
Q.3	a. What is structure? Explain	memory allocation of structures.	(6
	b. Explain Unions.		(6
	c. What is the use of files?		(4
Q.4	a. Explain binary search.		(8
	b. Explain Bubble Sort.		(8
Q.5	•	ou implement a stack using array?	(8
	b. Why a circular queue is mo circular Queue.	ore efficient than simple generic? Implement a	(8
Q.6	a. Explain algorithm of Merg	ing linked list.	(6
	b. What do you understand by	y Polynomials? Explain.	(4
	c. Explain deletion of a node	from linked list.	(
Q.7	a. Explain the use of circular	linked list.	(8
	b. Explain doubly linked list.		(8
Q.8	a. What is a binary tree? Exp	lain binary tree traversals.	(8
	b. What is binary search tree? BST?	Explain algorithm to search using target key in	(8
Q.9	a. How a graph can be repres	ented through Adjancy Matrix? Explain BFS.	(8
	b. What is spanning tree? Exp	plain Minimum Cost spanning tree.	(8