ROLL NO.

Code: AT78

Subject: DATA MINING & WAREHOUSING

AMIETE – IT (Current Scheme)

Time: 3 Hours

DECEMBER 2018

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or the best alternative in the following: 0.1 (2×10) a. Extreme values that occur infrequently are called as (A) Rare Values (B) Dimensionality reduction (C) Outliers (D) Both (A) and (B) b. Mode of the data set $\{13, 3, 11, 24, 5, 3, 9, 2\}$ is **(A)** 24 **(B)** 3 **(C)** 9 (D) None of these c. The output of KDD is (A) Useful information (**B**) Information (C) Query (D) Data d. Data scrubbing is a process to (A) upgrade the quality of data after it is moved into a data warehouse (B) load the data in the data warehouse and to create the necessary indexes (C) upgrade the quality of data before it is moved into a data warehouse (D) reject data from the data warehouse and to create the necessary indexes e. A star schema has what type of relationship between a dimension and fact table? (A) many-to-many (B) one-to-many (C) one-to-one (**D**) All of these f. _____ includes normalization and aggregation as data pre-processing procedures. (A) Data reduction (**B**) Data cleansing (D) Data integration (C) Data transformation g. Which operation performs data aggregation by climbing up a dimensional hierarchy? (A) Roll-up (**B**) Dice (C) Slice (D) Drill-down

AT78 / Dec-2018

ROLL NO.

Code: AT78

Subject: DATA MINING & WAREHOUSING

h.	Which of the following is not an OLAP operation?		
	(A) Drill-up	(B) Drill-down	
	(C) Drill-through	(D) Drill-across	
i.	. Which of the following is a data smoothing technique		
	(A) Histogram	(B) Regression	
	(C) Correlation	(D) Induction	
j.	The Apriori Algorithm is used for		
	(A) Classification	(B) Clustering	
	(C) Association	(D) Regression	

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	 a. Describe major challenges regarding data mining & society along with efficiency & scalability issue. 	′ (8)
	b. List and describe the five primitives for specifying a data mining task.	(8)
Q.3	a. Explain the need of data discretization. How is it performed? In the same context explain concept hierarchy generation. (2+:	e 3+3)
	b. Explain various data cleaning techniques used in data pre processing phase.	(8)
Q.4	a. Explain drill-down analysis and event mapping in context of EIS.	(8)
	b. Explain the procedure for class comparison.	(8)
Q.5	a. What is Generalization? How it is useful in data transformation? Give a example.	
	b. Define Iceberg Cube and Shell Cube.	(4)
	c. Discuss how to support quality drill down although some low level cells may contain empty or too less data for reliable analysis.	(8)
Q.6	a. How classification is done by back-propagation. Give an example of a general multilayered feed-forward neural network.	(8)
	b. Explain the Decision Trees. What are the applications of a Decision Tree? Discuss.) (8)
Q.7	a. Why is naive Bayesian classification called "naive"? Briefly outline the major ideas of naive Bayesian classification.	: (8)

C	ode: AT78	Subject: DATA MINING & WAREHOUSIN	IG
	b. Give the under shortcomings.	rlying principle of neural networks. State its advantages and What are the applications of this technique in today's scenario?	1 (8)
Q.8	a. Differentiate be analysis.	etween partitioning methods and density based methods of cluste	r (8)
	b. Give a descript	ion of types of data in Cluster Analysis.	(8)
Q.9	a. Explain the soc	ial impact of data mining.	(8)
	b. Describe few m	ajor applications of data mining in the business area.	(8)