ROLL NO. _

Code: AE77/AC77/AE121

Subject: DIGITAL SIGNAL PROCESSING

AMIETE – ET/CS (Current & New Scheme)

Time: 3 Hours

DECEMBER 2018

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
 - Q.1 Choose the correct or the best alternative in the following: (2×10)
 - a. Which mathematical notation specifies the condition of periodicity for a continuous time signal?

$(\mathbf{A}) \mathbf{x}(t) = \mathbf{x}(t+T\mathbf{o})$	(B) $x(n) = x(n+N)$
(C) $\mathbf{x}(t) = e^{-\alpha t}$	(D) $x(t) = x(t-To)$

- b. Double sided phase of amplitude spectra
 - (A) Possess an odd & even symmetry respectively
 - (B) Possess an even & odd symmetry respectively
 - (C) Both possess an odd symmetry
 - (D) Both possess an even symmetry
- c. Duality property of Fourier transform states that
 - (A) Shape of signal and spectrum in frequency domain can be inter changeable
 - (B) Shape of signal and spectrum in time domain can be inter changeable
 - (C) Shape of signal and spectrum in time domain can never be inter changeable
 - (D) Shape of signal and spectrum in frequency domain can never be inter changeable

d. What is the possible range of frequency spectrum for discrete time Fourier series? (A) 0 to 2π (B) $-\pi$ to π (C) Both (A) & (B) (D) -2π to 2π

e. What is the frequency response of a system with input h(n) and window length of M? (A) $\sum_{n=0}^{m-1} h(n) e^{j\omega n}$ (B) $\sum_{n=0}^{m} h(n) e^{j\omega n}$ (D) $\sum_{n=0}^{m-1} h(n) e^{-j\omega n}$

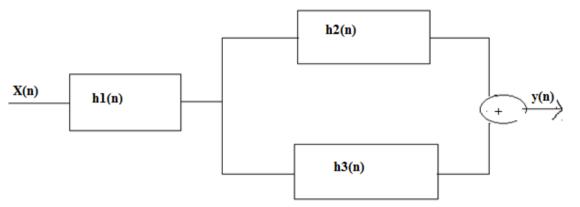
f. The DFT of $\delta(n)$ is

(A) 2π	(B) π
(C) 1	(D) 0

g. For a Kaiser window the width of main lobe is (A) $4\pi/N$ (B) $8\pi/N$ (C) $12\pi/N$ (D) Adjustable

ROLL NO.

		ROLL NO	
Coc	de: AE77/AC77/AE121	Subject: DIGITAL SIGNAL PRO	CESSING
		me systems require memory in order to store th	e
	previous input?		
	(A) Adder	(B) Signal Multiplier	
	(C) Unit Advance	(D) Unit delay	
	i. The condition for impulse res	sponse to be anti symmetric is	
	(A) $h(n) = -h(N-1-n)$	(B) $h(n) = h(-n)$	
	(C) $h(n) = h(N-1-n)$	(D) All these	
	j. In FIR filter design, which ar controlled by using Kaiser v	nong the following parameters is /are separately window?	,
	(A) Order of filter (N)	(B) Transition width of main lobe	
	(C) Both (A) and (B)	(D) None	
	Ŭ	Questions out of EIGHT Questions. Juestion carries 16 marks.	
2.2	a. Explain the digital processing		(8) Lat the rate
_	a. Explain the digital processing b. Consider the analog signal x($F_{s1} = 150$ Hz and $F_{s2} = 400$ Hz	(t) = $5 \cos 100\pi t$. Suppose the signal is sampled what is the discrete time signal obtained after the systems described by the difference equation	at the rate sampling? (8)
-	 a. Explain the digital processing b. Consider the analog signal x(F_{s1} = 150Hz and F_{s2} = 400Hz a. Find the impulse response of 	(t) = $5 \cos 100\pi t$. Suppose the signal is sampled what is the discrete time signal obtained after the systems described by the difference equation 2x(n-1)	l at the rate sampling? (8) n
_	 a. Explain the digital processing b. Consider the analog signal x(F_{s1} = 150Hz and F_{s2} = 400Hz a. Find the impulse response of y(n)-3y(n-1)-4y(n-2) = x(n)+ 	(t) = $5 \cos 100\pi t$. Suppose the signal is sampled what is the discrete time signal obtained after the systems described by the difference equation 2x(n-1)	l at the rate sampling? (8) n (12)
2.3	 a. Explain the digital processing b. Consider the analog signal x(F_{s1} = 150Hz and F_{s2} = 400Hz a. Find the impulse response of y(n)-3y(n-1)-4y(n-2) = x(n)+ Also find the system transfer b. Explain all pass systems. a. Obtain the direct form I and equation 	(t) = $5 \cos 100\pi t$. Suppose the signal is sampled what is the discrete time signal obtained after the systems described by the difference equatio 2x(n-1) function H(Z).	l at the rate sampling? (8) n (12) (4)
).3	 a. Explain the digital processing b. Consider the analog signal x(F_{s1} = 150Hz and F_{s2} = 400Hz a. Find the impulse response of y(n)-3y(n-1)-4y(n-2) = x(n)+ Also find the system transfer b. Explain all pass systems. a. Obtain the direct form I and equation 	(t) = $5 \cos 100\pi t$. Suppose the signal is sampled what is the discrete time signal obtained after the systems described by the difference equation 2x(n-1) function H(Z).	l at the rate sampling? (8) n (12) (4) rned by the
).3	 a. Explain the digital processing b. Consider the analog signal x(F_{s1} = 150Hz and F_{s2} = 400Hz a. Find the impulse response of y(n)-3y(n-1)-4y(n-2) = x(n)+ Also find the system transfer b. Explain all pass systems. a. Obtain the direct form I and equation 	(t) = 5 cos100 π t. Suppose the signal is sampled What is the discrete time signal obtained after the systems described by the difference equation 2x(n-1) function H(Z). d direct form II realizations of a system gover $+\frac{1}{64}y(n-3) + x(n) + 3x(n-1) + 2x(n-2)$	l at the rate sampling? (8) n (12) (4) rned by the (12)
).3).4	 a. Explain the digital processing b. Consider the analog signal x(F_{s1} = 150Hz and F_{s2} = 400Hz a. Find the impulse response of y(n)-3y(n-1)-4y(n-2) = x(n)+ Also find the system transfer b. Explain all pass systems. a. Obtain the direct form I and equation y (n) = -³/₈y(n-1) + ³/₃₂y(n-2) + b. Draw the network structures An 8 point sequence is given 	(t) = 5 cos100 π t. Suppose the signal is sampled What is the discrete time signal obtained after the systems described by the difference equation 2x(n-1) function H(Z). d direct form II realizations of a system gover $+\frac{1}{64}y(n-3) + x(n) + 3x(n-1) + 2x(n-2)$ for FIR systems. by x(n) = {1,1,1,1,1,0,0}; compute its 8 point	l at the rate sampling? (8) n (12) (4) med by the (12) (4) DFT by
).3).4	 a. Explain the digital processing b. Consider the analog signal x(F_{s1} = 150Hz and F_{s2} = 400Hz a. Find the impulse response of y(n)-3y(n-1)-4y(n-2) = x(n)+ Also find the system transfer b. Explain all pass systems. a. Obtain the direct form I and equation y (n) = -³/₈y(n-1) + ³/₃₂y(n-2) + b. Draw the network structures 	(t) = 5 cos100 π t. Suppose the signal is sampled What is the discrete time signal obtained after the systems described by the difference equation 2x(n-1) function H(Z). d direct form II realizations of a system gover $+\frac{1}{64}y(n-3) + x(n) + 3x(n-1) + 2x(n-2)$ for FIR systems. by x(n) = {1,1,1,1,1,0,0}; compute its 8 point	l at the rate sampling? (8) n (12) (4) med by the (12) (4) DFT by
2.3 2.4	 a. Explain the digital processing b. Consider the analog signal x(F_{s1} = 150Hz and F_{s2} = 400Hz a. Find the impulse response of y(n)-3y(n-1)-4y(n-2) = x(n)+ Also find the system transfer b. Explain all pass systems. a. Obtain the direct form I and equation y (n) = -³/₈y(n-1) + ³/₃₂y(n-2) + b. Draw the network structures An 8 point sequence is given 	(t) = 5 cos100 π t. Suppose the signal is sampled What is the discrete time signal obtained after the systems described by the difference equation 2x(n-1) function H(Z). d direct form II realizations of a system gover $+\frac{1}{64}y(n-3) + x(n) + 3x(n-1) + 2x(n-2)$ for FIR systems. by x(n) = {1,1,1,1,1,0,0}; compute its 8 point hm	l at the rate sampling? (8) n (12) (4) med by the (12) (4) DFT by (8)
2.3 2.4 2.5	 a. Explain the digital processing b. Consider the analog signal x(F_{s1} = 150Hz and F_{s2} = 400Hz a. Find the impulse response of y(n)-3y(n-1)-4y(n-2) = x(n)+ Also find the system transfer b. Explain all pass systems. a. Obtain the direct form I and equation y (n) = -³/₈y(n-1) + ³/₃₂y(n-2) + b. Draw the network structures An 8 point sequence is given (a) Radix 2 DIT FFT Algorit (b) Radix 2 DIF FFT Algorit a. Using Impulse invariance meta 	(t) = 5 cos100 π t. Suppose the signal is sampled What is the discrete time signal obtained after the systems described by the difference equation 2x(n-1) function H(Z). d direct form II realizations of a system gover $+\frac{1}{64}y(n-3) + x(n) + 3x(n-1) + 2x(n-2)$ for FIR systems. by x(n) = {1,1,1,1,1,0,0}; compute its 8 point hm	l at the rate sampling? (8) n (12) (4) rned by the (12) (4)
<u>)</u> .2).3).4).5	 a. Explain the digital processing b. Consider the analog signal x(F_{s1} = 150Hz and F_{s2} = 400Hz a. Find the impulse response of y(n)-3y(n-1)-4y(n-2) = x(n)+ Also find the system transfer b. Explain all pass systems. a. Obtain the direct form I and equation y (n) = -³/₈y(n-1) + ³/₃₂y(n-2) + b. Draw the network structures An 8 point sequence is given (a) Radix 2 DIT FFT Algorit (b) Radix 2 DIF FFT Algorit 	(t) = 5 cos100 π t. Suppose the signal is sampled What is the discrete time signal obtained after the systems described by the difference equation 2x(n-1) function H(Z). d direct form II realizations of a system gover $+\frac{1}{64}y(n-3) + x(n) + 3x(n-1) + 2x(n-2)$ for FIR systems. by x(n) = {1,1,1,1,1,1,0,0}; compute its 8 point hm	l at the rate sampling? (8) n (12) (4) med by the (12) (4) DFT by (8)


2

Code: AE77/AC77/AE121

Subject: DIGITAL SIGNAL PROCESSING

(6)

b. An interconnection of LTI system is

The impulse response $h_1(n) = (1/2)^n u(n)$ $h_2(n) = u(n) h_3(n) = u(n-4)$ evaluate H(n)

Q.8 a. Find the linear convolution of the two finite sequences $x_1(n) = \{0,1,2,3,4\}$ and $x_2(n) = \{0,1\}$ (6)

3

	b. Sate and prove any four properties of Discrete Fourier transform.	(10)
Q.9	a. Explain periodogram.	(6)