Code: AE74/AE122/AC122

ROLL NO. _____

Subject: VLSI DESIGN AMIETE – ET/CS (Current & New Scheme)

Time: 3 Hours

DECEMBER 2018

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best alternative in the following:		(2×10)
	 a. Channel resistance R_{ON} is scaled by (A) 1/α (C) 1 	 (B) 1/β (D) α/β 	
	 b. Scan path approach is implemented (A) LSSD (C) Both (A) and (B) 	in (B) BST (D) Logical Redundancy	
	 c. What is Permittivity for free space? (A) 5.85x10 ⁻¹⁴ Fcm⁻¹ (C) 9.85x10 ⁻¹⁴ Fcm⁻¹ 	(B) 8.85x10 ⁻¹⁵ Fcm ⁻¹ (D) 8.85x10 ⁻¹⁴ Fcm ⁻¹	
	 d. What is the range for LSI? (A) 10 (C) 1000-20000 	(B) 100-1000 (D) 100000	
	 e. Volatility is helpful in reduction of . (A) Area (C) Power dissipation 	(B) Data Storage Time(D) Scaling	
	 f. Orange color in stick encoding schere (A) Polisilicon-2 (C) Via 	me represents (B) Polisilicon-1 (D) V _{DD}	
 g. DRC at subsystem level is used to check (A) Correct Wiring up of Leaf Cells (B) Correct Butting (C) Both (A) and (B) (D) Correct mask making 			
	 h. Scanning E- beam Microscopes are c (A) Cost (C) Slow 	disadvantageous due to(B) Low resolution(D) Less Reliable	
	i. Which model is suitable to represent(A) Mathematical model(C) Logical Model	 t a "stuck-at" fault? (B) Physical Model (D) None of these 	
AE74	/AE122/AC122/Dec-2018 1	AMIETE - ET/CS (Current & New So	cheme)

ROLL NO. _____

Code: AE74/AE122/AC122

Subject: VLSI DESIGN

j. Which one is suitable for 7	Festability?
(A) Controllability	(B) Legibility
(C) Reliability	(D) Availability

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Determine $Z_{P.U.}/Z_{P.D.}$ for an nMOS inverter driven by another nMOS inverter.	(6)
	b.		(10)
Q.3	a.	Describe n-well BiCMOS fabrication process steps.	(4)
	b.	In an nMOS transistor operating at room temperature following measurements are done $V_{GS}=4V$ $V_{SB}=2.6V$ $V_{DS}=4V$ $I_D=144\mu A$ and the process parameters are $W/L=1$, $t_{ox}=400$ Å, $ 2\Phi_F = 0.64$ V & $N_A=10^{16}$ /cm ³ Find V_{th} , electron mobility and body effect coefficient. Assume oxide charge $Q_{OX}=0$	(8)
	c.	For an enhancement type MOS transistor the following parameters were measured. $V_{T0} = 0.8V, \gamma = 0.2V^{1/2}, 2\Phi_F = 0.84V, K' = 20\mu A/V^2, V_{GS} = 2.8 V, V_{DS} = 5V, V_{BS} = 0V \&I_D = 0.24mA$. Find W/L.	(4)
Q.4	a.	Discuss all possible pull-up alternatives for an nMOS inverter circuit.	(4)
	b.	Explain lambda- based design rules for nMOS, pMOS and CMOS transistors.	(8)
	c.	Discuss the concept of minimum sizes and overlaps in transistor design rules.	
Q.5	a.	DiscussLatch-up problems and remedies in case of CMOS circuits.	(4) (6)
	b. с.	Discuss Parity generator circuit of a basic one-bit cell using stick diagrams. Explain, how super buffer circuits are helpful in delay reduction?	(6) (4)
Q.6		Describe the scaling effects in channel resistance, current density, power dissipation, substrate doping and substrate threshold currents.	(16)
Q.7	a.	Discuss Pseudo-nMOS, Dynamic and Clocked CMOS Logics in detail.	(12)
	b.	Discuss briefly the procedure of testing a sequential circuit.	(4)
Q.8	a.	Explain optimization technique(s) of a Carry skip adder.	(10)
	b.	Discuss the design of a pseudo-static RAM cell.	(6)
Q.9	a.	Give a qualitative analysis on Optimization of nMOS and CMOS inverters.	(10)
	b.	Discuss BILBO scheme used in Built-in-self -test.	(6)