ROLL NO.	

Code: AE66/AC66/AT66/AE108/AC108/AT108

Subject: MICROPROCESSORS & MICROCONTROLLERS

AMIETE - ET/CS/IT (Current & New Scheme)

Time: 3 Hours

DECEMBER 2018

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each

Any required data not explicitly given, may be suitably assumed and stated.			
Q.1	Choose the correct or the best alternate a. 8085 µp is a bit processor a (A) 16; internal data bus (C) 16; address bus	•	(2×10)
	b. Which of the following instructio(A) MVI B, 99H(C) CMA	n is an example of implied addressing r (B) LHLD 2400H (D) LDAX B	mode?
	2K memory? (A) 4 (C) 6	altered. altered.	make up
	 e. ALE pin of 8085 μp goes high of the lower order address/data bus (A) T4; decoding (C) T2; multiplexing 	luring state and is used for (B) T1; de-multiplexing (D) T2; de-multiplexing	of
	compared to Memory mapped I/ (A) Maximum 256 I/O devices a 65535 devices are possible i (B) I/O mapped I/O is slower as	are possible in I/O mapped I/O while man Memory mapped I/O. compared Memory mapped I/O. for address decoding in I/O mapped I/O.	naximum
	(D) I/O mapped I/O uses an 8-b bit address.	oit address while Memory mapped I/O	uses 16-

Code: AE66/AC66/AT66/AE108/AC108/AT108

Subject: MICROPROCESSORS & MICROCONTROLLERS

		g. Which of the following pins of 8085 μ (A) AD ₀ -AD ₇	(B) AD_8 - AD_{15}	
		(C) SID & SOD	(D) $S_0 \& S_1$	
		h. Which of the following interrupt is not(A) TRAP(C) RST 7.5	vectored? (B) INTR (D) RST 0	
		 i. What will be the status of all the ports of (A) All the ports will be in input mode (B) All the ports will be in output mode (C) All the ports will be tri-stated. (D) There will be no change in port stated. 	e.	
		 j. In 8051 μp, to put the entire interrupt so it must be no more than	ervice routine in the interrupt vector table, _ in size. (B) 4 bytes (D) 32 bytes	
_		Answer any FIVE Questions out of Each question carries	_	
Q.2	a.	Explain the stack operation while executing the pointer is initialised to 07FFH (i) PUSH PSW, (ii) XTHL.		(4)
	b.	Show with the help of a diagram, how the addr	ress and data lines are de-multiplexed. (6)
	c.	• •	to reset the peripherals connected to the µ; to provide the clock to the processor	p 6)
Q.3	a.	Why TMP register is connected in bidirectional	l with internal data bus of 8085 μp?	(4)
	b.	• • • • • • • • • • • • • • • • • • • •	Starting address 0000H)	(6)
	c.	Differentiate among fetch, execute, machine at help of a suitable example.	<u> </u>	he (6)
Q.4	a.	Write an 8085 μp based program to clear all the of accumulator.	-	nts (4)
	b.	In 8085 μp , the instructions INX and DCX do and disadvantages of the same?	, ,	es 6)

ROLL NO.	
HOLL NO.	

Code: AE66/AC66/AT66/AE108/AC108/AT108

Subject: MICROPROCESSORS & MICROCONTROLLERS

	C.	from "NUMBER" to 12 binary numbers and store them in locations starting from "RESULT".	(6)
Q.5	a.	Differentiate between Programmed I/O and Interrupt driven I/O. Mention the relative advantage of the second configurations of the same.	(4)
	b.	Why an EI instruction is always written before the RET command of an Interrupt Service Routine (ISR)? Explain the two purposes for which SIM instruction is used.	e (4)
	c.	Write down the four different ways of disabling any interrupt.	(4)
	d.	Differentiate among Port A, Port B and Port C of 8255 PPI. Write down the different most of operation of 8255 PPI.	des (4)
Q.6	a.	Write an 8085 µp based assembly language program to display and blink "HELP US" us 8279 Keyboard and Display Controller. Assume the delay subroutine is available at 03E	_
	b.	Write an $8085~\mu p$ based assembly language program to input 256 bytes of data from a keyboard connected to Port A of $8255~PPI$ in mode 1 and output them to a parallel printed connected to Port B of $8255~PPI$ in mode 1. Use interrupt driven I/O for inputting and statcheck I/O for outputting. Assume inputting is always faster than outputting.	er
Q.7	a.	Draw the block diagram of 8259 programmable interrupt controller and explain different modes of operation. How can it be expanded to handle 64 interrupt levels?	(8)
	b.	Differentiate between Active and Idle cycles of 8237 DMA controller. Why DMA transfis faster and how does it improve system performance?	er (8)
Q.8	a.	What is the advantage of Programmable Interval Timer (PIT)/ Counter over software designed timer/ counter? Draw the status of Clock, Gate and Out signals in mode 0 of 82 PIT for a count value of five.	253 (8)
	b.	Differentiate between the following in context of 8251A i) Mode words and command words ii) Synchronous and Asynchronous Communication	(8)
Q.9	a.	Explain the operation of overflow flag of 8051 by giving suitable example.	(4)
	b.	Draw the internal architecture of 8051 µc and discuss its features.	(6)
	c.	Differentiate between General Purpose RAM (GPR) and Special Function RAM (SFR). Explain the memory organization of internal 128 bytes RAM.	(6)