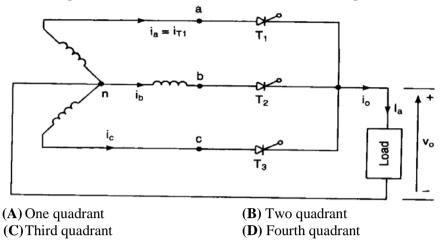
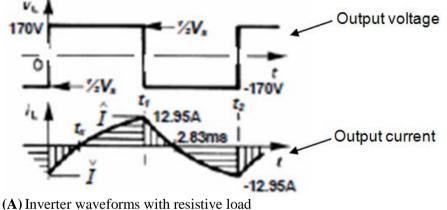
ROLL NO. _____

Code: AE123

Subject: POWER ELECTRONICS


AMIETE - ET (New Scheme)

Time: 3 H	ours	DECEMBE	R 2018	Г	Max. Marks: 100
IMMEDIA NOTE: Th • Question the span • The ans the com • Out of question	TELY AFTE nere are 9 Que on 1 is compu- nce provided f swer sheet for nmencement the remaini on carries 16 r	lsory and carries 20 or it in the answer be the Q.1 will be colle of the examination. ing EIGHT Questio	<i>QUESTION F</i> marks. Answe ook supplied a cted by the in ons answer a	PAPER. er to Q.1 must be and nowhere else. vigilator after 45 ny FIVE Quest	e written in 5 minutes of ions. Each
a.	Ideal device wi (A) Infinite con (B) Finite cond (C) Zero condu (D) Loss depen	duction losses uction losses	rent flow	llowing:	(2×10)
c.	 (A) 0 V (C) 0.5 V Latching curren (A) < holding c (C) = holding c For the circuit 	urrent of SCR	(D) All of thes		ontains
		v = V _m sinωt	R	i _o + v _o	
	(A) One pulse/c(C) Three pulse	-	(B) Two pulse(D) Zero volta	-	
e.	-	chopper, the value of in 'k' can be written as.	put resistance in (B) k/R (D) R/k	terms of load resis	tance 'R'
f.	Increasing the (A) Increase the (C) Decrease the		(B) Increase th	S will ne output voltage the switching losses	5

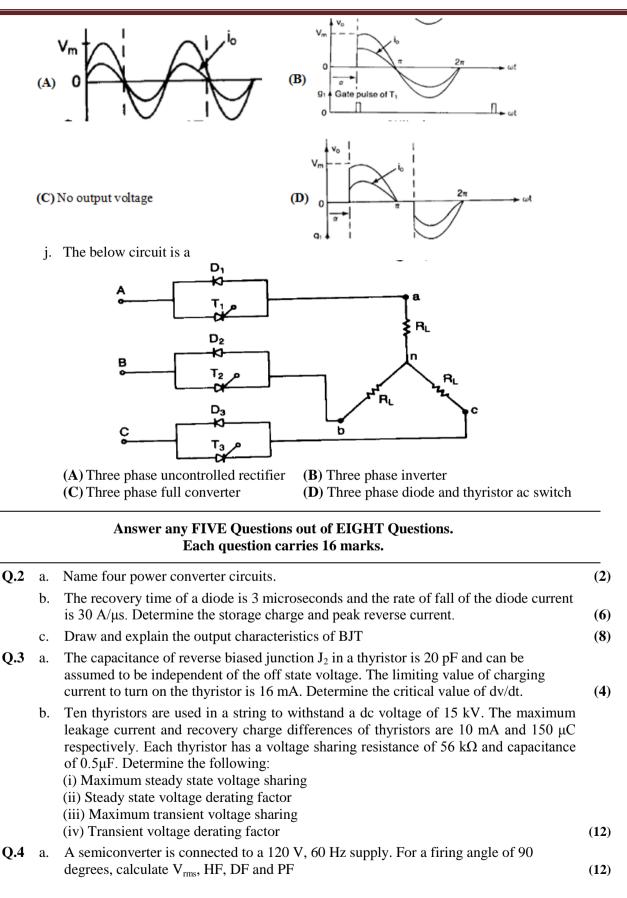

Code: AE123

Subject: POWER ELECTRONICS

g. The below power converter circuit with resistive load will operate in

h. The below waveforms indicate,

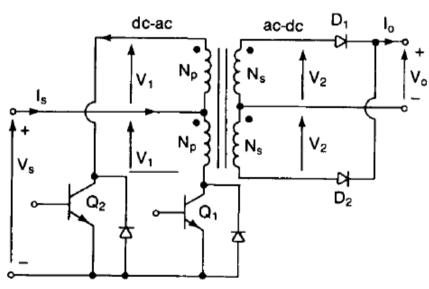
(**B**) Inverter waveforms with inductive load


(C) Inverter waveforms with Resistive-Inductive load

(D) Inverter waveforms with capacitive load

i. In the below circuit, for a firing angle alpha, the output voltage will be (Assume x axis as variation of ωt)

Subject: POWER ELECTRONICS


ROLL NO. __

Code: AE123

Subject: POWER ELECTRONICS

	b.	Derive the expression for the average voltage of full wave controlled rectifier with resistive load. Draw the necessary waveforms also. (4			
		resistive load. Draw the necessary waveforms also.			
Q.5	a.	Explain the working principle of three phase half wave controlled rectifier.			
	b.	Explain three phase dual converter with necessary circuit and waveforms.			
Q.6	a.	In a DC chopper with resistive load of value R = 10 ohms and the input voltage of 220 V. The chopper is operated at a switching frequency of 1 kHz with an on state drop of 2 V. For 50 % duty cycle, find (i) Average output voltage (ii) Chopper efficiency (iv) Effective input resistance	(12)		
	b	Draw the schematic of boost converter and discuss its modes of operation. Also draw the current waveform during each mode of operation.			
Q.7	a. b.	the necessary waveforms under 180 degree mode of operation.			
	U.	A single-phase han-bridge inverter has load K = 232, and de source voltage $\frac{V_s}{2} = 115V$	(6)		
		(i) Sketch the waveforms for output voltage v_0 , load current i_0 , currents through diode and thyristor (Harmonics other than fundamental components are neglected).			
		(ii) Find power delivered to load due to fundamental current.(iii) Check whether forced commutation is required.			
Q.8	a.	Explain single phase cycloconverter with necessary circuit and waveforms.	(10)		
	b.	Explain single phase AC switch with necessary waveforms.	(6)		

Q.9 a.

The average (or dc) output voltage of the push-pull circuit shown above is 24 V with
the resistive load of 0.8 ohms. The on-state voltage drops of transistors and diodes are
1.2 V and 0.7 V respectively. The turns ratio of the transformer is 0.25. Determine
(i) Average input current(ii) Efficiency(iii) Average transistor current(iv) Peak transistor current(2+3+2+3)

b. What is SMPS? Give its operating principle and industrial applications.