ROLL NO.	

Subject: FINITE AUTOMATA & FORMULA LANGUAGES **Code: AC68/AC120**

AMIETE - CS (Current & New Scheme)

Time: 3 Hours	DECEMBER 2018	Max. Marks: 100
---------------	---------------	-----------------

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each

_	estion carries 16 marks. y required data not explicitly given, may	be suitably assumed and stated.			
Q.1	Choose the correct or the best alternative in the following:				
	a. Grammars that can be translated to DFA				
		B) Right linear grammar (D) All of these			
	b. If language $L=\{0,1\}^*$, then the reversed language $L=\{0,1\}^*$				
		(B) {}* (D) {0}*			
	c. Let L be the language generated by regular deterministic finite automata M. Consider are reachable from the start state, RM has (A) 2 (C) 5	the relation RM defined by M. As all states	1		
	d. Let L = {0^n1^n n≥0} be a context free language. Which of the following is correct?				
	(A) L' is context free and L^k is not c	•			
	(B) L' is not context free and L^k is context free for any $k \ge 1$				
	(C) Both L' and L^k are context free for any k≥1				
	(D) Both L' and L^k are not context if	ree for any k≥l			
	e. Match the following:				
	List - I	List - II			
	(a) {a^nb^n n> 0} is a deterministic context free language	(i) but not recursive language			
	(b) The complement of {a^nb^na^n n> is a context free language	0) (ii) but not context free language			
	(c) {a^nb^na^n} is context sensitive land Automation	nguage(iii) but cannot be accepted			

(d) L is a recursive language

(iv) but not regular

Code: AC68/AC120 Subject: FINITE AUTOMATA & FORMULA LANGUAGES

Codes:

- (a) (b) (c) (d)
- (**A**) (i) (ii) (iii) (iv)
- **(B)** (i) (ii) (iv) (iii)
- **(C)** (iv) (iii) (ii) (i)
- (**D**) None of the above is correct match
- f. The language of all non-null strings of a's can be defined by a context free grammar as : S→a S|S a| a

The word a³ can be generated by ____ different trees

(B) 3

(C) 4

- **(D)** 5
- **g.** There are exactly _____ different finite automata with three states x, y and z over the alphabet {a, b} where x is always the start state.
 - (A) 64

(B) 256

(C) 1024

- **(D)** 5832
- **h.** A grammar G is LL(1) if and only if the following conditions hold for two distinct productions $A \rightarrow \alpha \mid \beta$
 - a.I. First $(\alpha) \cap$ First $(\beta) \neq \{a\}$ where a is some terminal symbol of the grammar.
 - b. II. First $(\alpha) \cap \text{First } (\beta) \neq \lambda$
 - c. III. First (α) \cap Follow(A) = φ if $\lambda \in$ First (β)
 - (A) I and II

(B) I and III

(C) II and III

- **(D)** I,II,III
- i. A Given a Turing Machine

$$M = (\{q0,q1,q2,q3\}, \{a,b\}, \{a,b,B\}, \delta, B, \{q3\})$$

Where δ is a transition function defined as

$$\delta(q0,a) = (q1,a,R)$$
, $\delta(q1,b) = (q2,b,R)$, $\delta(q2,a) = (q2,a,R)$, $\delta(q2,b) = (q3,b,R)$

The language L(M) accepted by the Turing Machine is given as:

(A) aa*b

(B) abab

(C) aba*b

- **(D)** aba*
- **j.** Regular expression for the complement of language $L = \{a^nb^m \mid n \ge 4, m \le 3\}$
 - (A) $(a + b)^* ba(a + b)^*$

- **(B)** a* bbbbb*
- (C) $(\lambda + a + aa + aaa)b^* + (a + b)^* ba(a + b)^*$ (D) None of the above

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Define the transition graph and transition table for a deterministic finite automaton (DFA).

(5)

Code: AC68/AC120

Subject: FINITE AUTOMATA & FORMULA LANGUAGES

- **b.** Deign a DFA to accept the language $L=\{w|w \text{ is of even length and begin with } 01\}.$ (5)
- **c.** Give nondeterministic finite automata to accept the following languages over $\{0,1\}^*$
 - (i) The set of all strings containing exactly two occurrences of 01
 - (ii) The set of all strings such that everyone is followed immediately by 00.(3+3)
- **Q.3 a.** Show that if L is regular, so is L^R . (5)
 - **b.** Find the regular expression for the following language:
 - (i) The complement of L={ a^nb^m ; $n < 4, m \le 3$ }

(ii)
$$L=\{w\in\{0,1\}^*\}$$
 (3+3)

- **c.** Show that 0+1+2+....+n=n(n+1)/2 for every n>0. (5)
- **Q.4 a.** How that any regular grammar G for which $L(G) \neq \emptyset$ must have at least one production of the form $A \longrightarrow x$, where $A \in V$ and $x \in T^*$.
 - **b.** Construct the right and left linear grammar for the language $L=\{a^nb^m; n \ge 2, m \ge 3\}$ (4)
 - **c.** Show that the language L= $\{a^nb^kc^{n+k}; n \ge 0, k \ge 0\}$ is not regular. (6)
- Q.5 a. Show that the following grammar is ambiguous and construct the unambiguous grammar equivalent grammar for the following: (3+3)

$$S \longrightarrow AB/aaB$$
, $A \longrightarrow a/Aa$, $B \longrightarrow b$

b. Eliminate the useless production from the following: (5)

$$S \longrightarrow a/a A/B/C$$

$$A \longrightarrow aB/\lambda$$

$$B \longrightarrow Aa$$

$$C \longrightarrow cCD$$

$$D \longrightarrow ddd$$
.

c. Convert the following grammar to Chomsky normal form (5)

$$A \longrightarrow aab$$

$$B \longrightarrow Ac$$

Q.6 a. Construct the puhdown automaton(PDA) which accepts the language $L=\{wcw^T; w \in \{a,b\}^*\}$ by final state.

c. Show that any left linear grammar is unambiguous. (5)

(6)

ROLL	NO.	 		_

Code: AC68/AC120 Subject: FINITE AUTOMATA & FORMULA LANGUAGES

- **a.** Sketch the construction of Turing machine that can perform addition and multiplication of a positive integer x and y given in the usual decimal notation.
 - **(8)**

b. Construct a Turing machine to compute the function : $f(w)=w^R$, where $w \in \{0,1\}^+$

- **(8)**
- **Q.8** a. Prove that $A_{context \ sensitive \ grammer}$ is decidable, where $A_{context \ sensitive}$ $grammer = \{(G, w) | \text{ the context sensitive grammar G accepts the input string } w \}. (8)$
 - **b.** Show that there exists a language over Σ that is not recursively enumerable.
- **(8)**
- Q.9 **a.** Prove that the following language is not context free language: **(6)** $L=\{a^nb^n; n \ge 0, n\ne 0\}$
 - b. The family of linear languages is not closed under intersection. Justify with example
 - **(5)**
 - c. Let L1 be a context free language and L2 be regular. Show that there exit an algorithm to determine whether or not L1 and L2 have common element.
 - **(5)**