ROLL NO.

Code: AC65/AC116

Subject: DISCRETE STRUCTURES

AMIETE – CS (Current & New Scheme)

Time: 3 Hours

DECEMBER 2018

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE OUESTION PAPER.

NOTE: There are 9 Ouestions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Choose the correct or the best alternative in the following: (2×10) 0.1 a. Which of the following set is uncountable 1 1 1

(A) $S = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4},\}$	$(\mathbf{B}) A = \{1, 2, 4, 7, 11, 16, \dots\}$
(C) $Z = \{0, \pm 1, \pm 2, \pm 3,\}$	(D) open interval (0,1)

b. $p \rightarrow q$ is equivalent to

(A) <i>7pVq</i>	(B) p ∨ $¬q$
(C) $\forall p \land q$	(\mathbf{D}) ד א ד q

c. If F_0, F_1, F_2, \dots are Fibonacci num	bers, then $F_{6=}$
(A)3	(B) 8
(C)5	(D)13

d. Let A be the set of all positive integers and R be the relation on A defined by *aRb* if and only if $a = b^k$ for some positive integer k. Find which of the following belongs to R?

(A) (3,9)	(B) (2,5)
(C) (5,2)	(D) (9,3)

e. The function defined by $f(x) = \sin x$ is one-to-one when its domain is $(\Lambda) \frac{-\pi}{-\pi} < x < \frac{\pi}{-\pi}$ $(\mathbf{R}) - \pi < \nu < \pi$

1

$(\mathbf{A}) \frac{1}{2} \leq \mathbf{X} \leq \frac{1}{2}$	$(\mathbf{B}) - n \leq x \leq n$
(C) $0 \le x \le \pi$	(D) $0 \le x \le \frac{\pi}{2}$

- f. In Lattice L, $((a \land b) \lor a) \land b$ is (A) $a \wedge b$ **(B)** *a* ∨ *b* (**C**) $(a \land b) \lor a$ g. (Z, +) has cyclic subgroup of
- (A) order 2 (C) prime order

(D) $((a \lor b) \land a) \lor$ (B) any order

(**D**) infinite order

ROLL NO.

Subject: DISCRETE STRUCTURES

h. If 4 x 7 matrix is a generator matr for C is a	rix for a linear code C, then a parity check matrix	
(A) 7x3 matrix	(B) 7x4 matrix	
(\mathbf{C}) 4x4 matrix	(D) $7x7$ matrix	
i. A finite commutative ring with id	lentity is a field if	
(A) R has no zero divisors		
(B) R has unique multiplicative id	dentity	
(C) The number elements in R is	prime	
(D) The number of elements in R is a power of a prime		
j. $A - \phi$ and $\phi - A$ are respectively		
$(\mathbf{A}) A, \overline{A}$	$(\mathbf{B}) \phi, \phi$	
(C) A, ϕ	$(\mathbf{D}) A, A$	
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.		
a In how many ways can a sum of 3 or 10 be obtained when two dice are thrown?		

Q.2	a. In how many ways can a sum of 3 or 10 be obtained when two dice are thrown?	
		(4)
	b. If A={1,2,4,6,8} $B = \{3,5,7\}$ and C={2,4,5,9}. Find $A - C, A \times (B \cap C)$ and	$A\Delta B$.
		(6)
	c. Suppose A and B are events with $P(A)=0.6$, $P(B)=0.3$ and $P(A \cap B)=0.2$. Find	d the
	probability that (i) A does not occur (ii) B does not occur (iii) A or B occur	S
	(iv) Neither A nor B occurs.	(6)
Q.3	a. Show that $\forall P \to (Q \to R) \Leftrightarrow Q \to (P \lor R)$.	(6)
	b. Examine whether the formula $7((P \to Q) \to ((R \lor P) \to (R \lor Q)))$ is	
	Tautology, contradiction or contingency?	(8)
	c. Symbolize the statement "Babu is happy if and only if Babu is not rich".	(2)
Q.4	a. Show that $(\forall x)(P(x)\lor Q(x)) \Rightarrow (\forall x)P(x)\lor (\exists x)Q(x)$.	(8)
	b. Prove that $\sqrt{2}$ is not a rational number.	(6)
	c. Let x and y denote integers. Consider the statement $p(x,y) : x+y$ is even. Write down the following statements in words:	
	(i) $\forall x, \exists y p(x,y)$	
	(ii) $\exists x \forall y p(x,y)$	(2)
Q.5.	a. Prove by mathematical induction that, for any positive integer n ,	

2

- b. For integers *m* and *k*, the Eulerian numbers a_{m,k} are defined recursively as follows:
 a_{0,0} = 1,
 a_{m,k} = 0 for k ≥ m > 0,
 a_{m,k} = 0 for k < 0,
 a_{m,k} = (m k)a_{m-1,k-1} + (k + 1)a_{m-1,k} for 0 ≤ k ≤ m 1.
 Determine the value of a_{m,k} for 1 ≤ m ≤ 5 and 0 ≤ k ≤ m 1.
- **Q.6.** a. For any non-empty sets A, B, C prove the following results: (i) $A \times (B \cup C) = (A \times B) \cup (AXC)$ (ii) $A \times (B - C) = (A \times B) - (A \times C)$ (8)

b. Let $A = \{1,2,3,4,6\}$ and R be a relation on A defined by aRb if and only if a is a multiple of b. Represent the relation R as a matrix and draw its digraph. (8)

- Q.7. a. Let $A = \{1,2,3,4,5\}$. Define a relation R on $A \times A$ by $(x_1, y_1)R(x_2, y_2)$ if and only if $x_1 + y_1 = x_2 + y_2$. Verify that R is an equivalence relation on $A \times A$. Determine the equivalences classes [(1,3), (2,4)] and [(1,1)]. Determine the partition of $A \times A$ induced by R. (8)
 - b. Draw the Hasse diagram for the poset $(\mathcal{P}(S), \subseteq)$, where $S = \{1,2,3,4\}$ and determine whether $(P(S), \Lambda, V)$ is a lattice or not. (8)
- **Q.8.** a. In each of the following cases, determine whether the given set together with the given binary operation is a group or not. If it is a group, indicate if it is abelian; also specify the identity and the inverse of an element:
 - (i) $\{-1, 1\}$ under usual multiplication
 - (ii) $\{-1, 0, 1\}$ under usual addition
 - (iii) $\int 10n/n \in z$ -under usual addition
 - (iv) The set of all mxn matrices under matrix addition. (8)
 - b. Let G be the set of all non-zero real numbers and let $a * b = \frac{1}{2}ab$. Show that (G,*) is an abelian group. (8)
- **Q.9** a. An encoding function $E: Z_2^2 \to Z_2^5$ is given by the generator matrix $G = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$. Determine all the code words. Find the associated parity-check matrix *H*. Use *H* to decode the received words: 11101,11011. (8)

3

b. Prove that the set Z with binary operations \bigoplus and Θ defined by

- $x \bigoplus y = x + y 1$
- $x \quad \Theta \ y = x + y xy$

is a commutative ring with unity. Is this ring an integral domain or a field? (8)