ROLL NO.

Code: DE51/DC51/DE101/DC101 Subject: ENGINEERING MATHEMATICS - I

DiplETE – ET/CS (Current & New Scheme)

Time: 3 Hours

December-2016

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1Choose the correct or the best alternative in the following:
$$(2 \times 10)$$

a. The value of
$$\underset{x \to 0}{\underset{x \to 0}{limit}} \frac{x^2 \sin \frac{1}{x}}{\sin x}$$
 is
(A) 1 (B) 0
(C) $\frac{1}{2}$ (D) None of these

b. The equation of a circle which passes through the intersection of the lines 3x - 2y = 1 and 4x + y = 27 and whose centre is at point (2,-3) is

(A) $(x+2)^2 + (y-3)^2 = 100$ (B) $(x-2)^2 + (y+3)^2 = 100$ (C) $(x-2)^2 + (y+3)^2 = 109$ (D) $(x+2)^2 + (y-3)^2 = 109$ c. The value of $\int_0^1 x \ e^x dx$ is (A) 1 (B) $(x-2)^2 + (y+3)^2 = 109$ (B) $(x+2)^2 + (y-3)^2 = 109$ (B) $(x+2)^2 + (y-3)^2 = 109$ (C) $(x+2)^2 + (y-3)^2 = 109$ (D) $(x+2)^2 + (y-3)^2 = 109$

d. In what ratio is the line joining the points A(4, 4) and B(7,7) is divided by P(-1, 1).

(A) (7:1)	(B) (2 : 3)
(C) (5:3)	(D) (5 : 8)

e. Change of the polar equation of $\theta = \frac{\pi}{4}$ into Cartesian equation is

(A) $y = 2x$	(B) $x = 4y$
(C) $x = 2y$	(D) $y = x$

Code: DE51/DC51/DE101/DC101 Subject: ENGINEERING MATHEMATICS - I

f. If $f(x) = x \cos x - \sin x$, then f'(x) is equal to

(A) x sinx	(B) – x sinx
(C) x cosx	$(\mathbf{D}) - \mathbf{x} \cos \mathbf{x}$

g. If one end of the diameter of the circle $x^2 + y^2 + 4x + 6y - 12 = 0$ is (1, 1) then other end of the diameter is equal to (A) (-5, -7) (B) (-2, -3)

(C) (-3, 5)	(D) (2, 7)

h.	If $A = \begin{bmatrix} 2 & 5 \\ -1 & 2 \end{bmatrix}$, then $A^2 - 4A + 7I$ is			
	$\mathbf{(A)} \begin{bmatrix} 1 & 6 \\ 2 & 4 \end{bmatrix}$	(B)	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 2
	$(\mathbf{C}) \begin{bmatrix} -1 & 8 \\ 0 & 0 \end{bmatrix}$	(D)		0

- i. If cos(A-B)=3cos(A+B), then cot A cot B is: (A)-2 (B) 2 (C) 1 (D) 3
- j. $\int \tan^2 x \, dx$ is equal to (A) $\tan x$ (B) $\tan x \cdot \sec x$ (C) $\tan^2 x$ (D) $\tan x - x$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
, then prove that $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$ (8)

b. Find the equation of the tangent to the curve $y^2 = 3 - 5x$ parallel to the lines 5x - 4y + 13 = 0 (8)

Q.3 a. Evaluate
$$\int_{0}^{\frac{\pi}{2}} \cos^{7} x \, dx$$
 (8)

b. Evaluate
$$\int_{1}^{2} \frac{1}{x(1+x^2)} dx$$
 (8)

2

ROLL NO.

Code: DE51/DC51/DE101/DC101 Subject: ENGINEERING MATHEMATICS - I

- Q.4 a. Prove that the inverse of a square matrix, if it exists, is unique. (8)
 - b. Find the adjoint of the matrix A, where

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{bmatrix}$$
(8)

Q.5 a. If
$$y = log(x + \sqrt{1 + x^2})$$
, Prove that
 $(1 + x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx} = 0$
(8)

b. Solve
$$\frac{dy}{dx} + y \cdot \sec x = \tan x$$
 (8)

Q.6 a. Let S_n denote the sum of the first n terms of an A.P. If $S_{2n} = 3S_n$, then prove that $\frac{s_{3n}}{s_n} = 6$ (8)

b. Prove that the coefficient of x^r in the expansion of $(1-4x)^{-1/2}$ is $\frac{(2r)!}{(r!)^2}$ (8)

Q.7 a. Prove that
$$\cos 80^{\circ} \cos 60^{\circ} \cos 40^{\circ} \cos 20^{\circ} = \frac{1}{16}$$
 (8)

- b. If $A + B + C = \pi/2$, then prove that $sin2A + sin2B + sin2C = 4 cosA \cdot cosB \cdot cosC$ (8)
- **Q.8** a. Find the equation of the right bisector of the segment joining A(1, 1) and B(2, 3) (8)
 - b. Find the distance between the lines 9x + 40y 20 = 0 and 9x + 40y + 21 = 0 (8)
- Q.9 a. Find the equation of the circle which passes through the points (3, -2), (-2, 0) and having its centre on the line 2x y = 3. (8)
 - b. Find the focus, vertex, axis, latus-rectum and directrix of the parabola $x^2 + 4x + 2y = 0$ (8)