ROLL NO.

Code: DE107

Subject: NETWORKS & TRANSMISSION LINES

DipIETE – ET (New Scheme)

Time: 3 Hours

December 2016

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER. NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

- a. Laplace Transform of the function e^{-2t} is _____. (A) $\frac{1}{s-2}$ **(B)** s + 2 (C) $\frac{1}{s+2}$ **(D)** 2s
- b. The value of Z_0 for open wire transmission line, in terms of S(spacing between two wires) and r (radius of either of wire) is _____

(A) $64\log_{10}\frac{S}{r}\Omega$	$(\mathbf{B}) \ 276 \log_{10} \frac{\mathbf{S}}{\mathbf{r}} \Omega$
(C) $76\log_{10}\frac{r}{S}\Omega$	(D) $275\log_{10}\frac{\mathrm{r}}{\mathrm{S}}\Omega$

- c. Characteristic impedance in terms of Z_{OC} & Z_{SC} is ______ (A) $Z_O = \sqrt{Z_{OC} \cdot Z_{SC}}$ (B) $Z_O = \sqrt{\frac{Z_{OC}}{Z_{SC}}}$ (C) $Z_0 = \sqrt{\frac{Z_{SC}}{Z_{OC}}}$ (**D**) $Z_0 = Z_{0C} \sqrt{Z_{SC}}$
- d. The reflection factor of a transmission line in terms of source impedance Z_1 and load impedance Z_2 is

$(\mathbf{A}) \ \frac{4\mathbf{Z}_1\mathbf{Z}_2}{\left \mathbf{Z}_1 + \mathbf{Z}_2\right }$	$\mathbf{(B)} \ \frac{2\left \mathbf{Z}_{1}+\mathbf{Z}_{2}\right }{\sqrt{\mathbf{Z}_{1}\mathbf{Z}_{2}}}$
(C) $\frac{2\sqrt{Z_1Z_2}}{ Z_1+Z_2 }$	$\mathbf{(D)} \ \frac{4\left(\mathbf{Z}_{1}/\mathbf{Z}_{2}\right)}{\left \mathbf{Z}_{1}+\mathbf{Z}_{2}\right }$

ROLL NO. ___

e. VSWR in case of Ultra high	h frequency lines is
(A) $\frac{V_{\text{max}}}{V_{\text{min}}}$	$(\mathbf{B}) \left \mathbf{V}_{\max} \cdot \mathbf{V}_{\min} \right $
(C) 1	(D) None of these
f. The reciprocity theorem ap	plies to only one of the following networks
(A) Bilateral networks only	(B) Linear as well as non-linear networks
(C) Only Non-linear netwo	rks (D) Linear and bilateral networks
g. Condition for reciprocity in	Z-Parameters is
(A) $Z_{11} = Z_{22}$	(B) $Z_{12} = Z_{21}$
(C) $Z_{11} = Z_{12}$	(D) $Z_{21} = Z_{22}$
h. An m-derived filter with m	= 1 is same as
(A) Attenuator	(B) Prototype filter
(C) Equalizer	(D) None of these
i. Which of the following atte	enuators have minimum loss?
(A) T-attenuator	(B) L attenuator
(C) Ladder attenuator	(D) π -attenuator
j. In a series RLC circuit at re	esonance, one of the following equations is satisfied
-	
(A) $\omega^2 LC = 1$	$(\mathbf{B}) \text{onl} \mathbf{C} = 1$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Explain wavelength & velocity of propagation.	(4)
	b.	Explain the loop resistance of an open wire line.	(4)
	c.	A telephone line has resistance of 20Ω , inductance of 10 mH, capacitance of 0.1 μ F and insulation resistance of 0.1 mega ohm/km. Find the input impedance at angular frequency of 5000 radian/sec if the line is very long.	(8)
Q.3	a.	Discuss in detail about the Input impedance of open and short circulated lines.	(8)
	b.	Discuss efficiency of Transmission.	(4)
	c.	Explain SWR of a line with any termination.	(4)
Q.4	a.	Derive the relation between VSWR and reflection co-efficient for ultra high frequency lines.	(8)
	b.	Explain double stub matching with the help of diagram.	(8)

ROLL NO.

(8)

(8)

(8)

Code: DE107

- **Q.5** a. With the help of a block diagram, explain about composite filter.
 - b. Design an L-type attenuator to operate into a resistance of 500Ω and to provide an attenuation of 15 dBs.
 (8)
- **Q.6** a. Find the value of voltage V_{AB} by applying superposition theorem to the network shown in Fig.1.

b. Find the current in the 10Ω resistor by using Thevenin's theorem when it is connected to terminals ab as shown in Fig.2.

Q.7	a. Explain Laplace transform of unit impulse function.	(8)
	b. Discuss in detail the initial and final value theorem.	(8)
Q.8	a. Explain the characterization of a two port network in terms of ABCD parameters.	(8)
	b. A two port network has the following Z-parameters: $Z_{11}=10\Omega$, $Z_{22}=12\Omega$, $Z_{21}=Z_{12}=5\Omega$. Determine the y-parameters for the network.	same (8)
Q.9	a. Explain in detail about the resonance in parallel RLC circuit and deriv expression for resonant frequency.	e an (8)
	b. A coil with inductance and resistance of 5 mH and 10Ω respectively a connected in series with a capacitor and a 10V, 1kHz source. Determine the	re
	(i) value of capacitance that will cause resonance in the circuit(ii) circuit current at resonance frequency	(8)