ROLL NO. _____

Code: DE105/DC105

Subject: ENGINEERING MATHEMATICS II

Diplete – Et/CS (New Scheme)

Time: 3 Hours

December 2016

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a.
$$\lim_{x \to 0} \left\{ \frac{\log(1 - x^2)}{\log \cos x} \right\}$$
 is equal to:
(A) $\frac{1}{2}$ (B) -2
(C) 2 (D) $-\frac{1}{2}$

b. The value of
$$\int_{0}^{\pi/2} \sin^7 x dx$$
 is equal to:

(A)
$$\frac{15}{35}$$
 (B) $\frac{34}{37}$
(C) $\frac{16}{35}$ (D) $\frac{17}{33}$

c. If $z_1 = 1 + i$, $z_2 = 2 + i$, and $z_3 = 3 + i$ then $z_1 \cdot z_2 \cdot z_3$ is equal to (A) $\left(\frac{18}{25}\right) + \left(\frac{1}{25}\right)i$ (B) $\left(\frac{1}{25}\right) + \left(\frac{18}{25}\right)i$ (C) $\left(\frac{18}{25}\right) - \left(\frac{1}{25}\right)i$ (D) $\left(\frac{1}{25}\right) - \left(\frac{18}{25}\right)i$

d. If $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{b} = 3\hat{i} + 4\hat{j} - \hat{k}$ then unit vector perpendicular to \vec{a} and \vec{b} is (A) $\frac{(3\hat{i} - 5\hat{j} + 11\hat{k})}{\sqrt{155}}$ (B) $\frac{(3\hat{i} + 5\hat{j} - 11\hat{k})}{\sqrt{155}}$ (C) $\frac{(-3\hat{i} + 5\hat{j} + 11\hat{k})}{\sqrt{155}}$ (D) $\frac{(-3\hat{i} - 5\hat{j} + 11\hat{k})}{\sqrt{155}}$

Code: DE105/DC105

Subject: ENGINEERING MATHEMATICS II

e.	The volume of parallelopiped whose edges are $\vec{a} = (2\hat{i} - 3\hat{j} + 4\hat{k});$		
	$\vec{b} = (\hat{i} + 2\hat{j} - \hat{k})$ and $\vec{c} = (3\hat{i} - \hat{j} + 2\hat{k})$ is		
	(A) 6	(B) 7	
	(C) 8	(D) 5	
f.	Solution of differential equation $D^2 y - 8Dy + 15y = 0$ is equal to		
	(A) $y = C_1 \frac{3x}{e} + C_2 \frac{5x}{e}$	(B) $y = C_1 \overset{3x}{e} + C_2 \overset{-5x}{e}$	
	(C) $y = C_1 \frac{e^{-3x}}{e} + C_2 \frac{e^{5x}}{e}$	(D) $y = C_1 \frac{e^{-3x}}{e} + C_2 \frac{e^{-5x}}{e}$	
g.	The series $\left(\frac{1}{2^2} + \frac{1}{5^2} + \frac{1}{8^2} + \dots \right)$ i	S	
	(A) Convergent	(B) Divergent	
	(C) Oscillatory	(D) None of these	
h.	The Laplace Transform of $(5\cos^3 2t)$ is equal to :		
	(A) $\frac{5s(s^2+28)}{(s^2+28)}$	(B) $\frac{25(s^2-28)}{(s^2-2s)^2}$	
	$(s^2 + 4)(s^2 + 36)$	$(s^2 + 4)(s^2 - 36)$	
	(C) $\frac{5s(s^2-28)}{(s^2-26)}$	(D) $\frac{5s(s^2-28)}{(s^2-2s)}$	
	$(s^2 + 4)(s^2 + 36)$	$(s^2 - 4)(s^2 - 36)$	
i.	$\frac{L}{L} \left[\frac{1}{(s+1)(s+2)} \right]$ is equal to:		
	$(\mathbf{A})\begin{pmatrix} -t & -2t\\ e+& e \end{pmatrix}$	$(\mathbf{B})\left(-\stackrel{-t}{e}+\stackrel{-2t}{e}\right)$	
	$(\mathbf{C})\begin{pmatrix} -t & -2t\\ e - & e \end{pmatrix}$	$(\mathbf{D}) \ \begin{pmatrix} -t & -2t \\ -e - e \end{pmatrix}$	
	x -x		
j.	Maclaurian Series for $f(x) = \frac{e+e}{2}i$	s equal to :	
	(A) $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} \cdots \cdots$	(B) $1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} \cdots \cdots$	
	(C) $\frac{x}{1!} + \frac{x^3}{3!} + \frac{x^5}{5!} \cdots \cdots$	(D) None	
Answer any FIVE Questions out of EIGHT Questions.			

Each question carries 16 marks.

Q.2	a. Expand $f(x) = \sin x$ in powers of $(x - \pi/2)$.	(8)
	b. Evaluate: $\lim_{x \to \pi/2} [\sec x - \tan x].$	(8)
Q.3	a. Evaluate by using Reduction Formula $\int_{0}^{\pi/4} \sin^2\theta \cos^{-3}\theta d\theta$	(8)
	b. Find area of Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ for $a > b$.	(8)

ROLL NO. _

Code: DE105/DC105

Subject: ENGINEERING MATHEMATICS II

Q.4 a. If 'n' be a positive integer, then show that
$$(1+i)^n + (1-i)^n = (2)^{\frac{n+2}{2}} \cos\left(\frac{n\pi}{4}\right)$$

- b. Two impedances $z_1 = (10 j60)$ and $z_2 = (10 + j20)$ are connected in parallel across 200 volts A.C. supply. Calculate Current in each branch and power consumed in each branch. (8)
- **Q.5** a. Forces $\vec{F_1} = (2\hat{i} + 7\hat{j}); \ \vec{F_2} = (2\hat{i} 5\hat{j} + 6\hat{k})$ and $\vec{F_3} = (-\hat{i} + 2\hat{j} \hat{k})$ act on a point 'P' whose position vector is $(4\hat{i} - 3\hat{j} - 2\hat{k})$. Find vector moment of the resultant of three forces acting on 'P' about the point Q, whose position vector is $(6\hat{i} + \hat{j} - 3\hat{k})$. (8)
 - b. Show that four points whose position vectors are $(3\hat{i} 2\hat{j} + 4\hat{k})$, $(6\hat{i} + 3\hat{j} + \hat{k})$, $(5\hat{i} + 7\hat{j} + 3\hat{k})$ and $(2\hat{i} + 2\hat{j} + 6\hat{k})$ are coplanar. (8)
- **Q.6** a. Solve diff. equation: $D^2 y - 5Dy + 6y = e^x$
 - b. A constant E.M.F., E volts is applied to a circuit containing a constant resistance 'R' ohms in series and a constant inductance 'L' henries. If the initial current is zero show that the current builds up to half its theoretical maximum

$$\inf\left(\frac{L\log 2}{R}\right) \text{seconds.}$$
(8)

Q.7 Test for convergence of series given below:
a.
$$\sum \left[\frac{1}{2n(2n-1)}\right]$$

b. $1-\frac{1}{3^2}+\frac{1}{5^2}-\frac{1}{7^2}+\cdots$

Q.8 Find Laplace Transform of following functions: (8+8) a. $f(t) = e^{-t} \cos t \cos 2t$

b.
$$f(t) = t^2 \sin at$$

Q.9 a. Find inverse Laplace Transform of $\frac{s+6}{(s+1)(s^2-4)}$ (8)

b. Use convolution theorem to show that $\frac{L}{L} \left[\frac{s^2}{(s^2 + p^2)(s^2 + q^2)} \right] = \frac{p \sin pt - q \sin qt}{p^2 - q^2}$ (8)

(8)

(8)