ROLL NO. _

Code: AE77/AC77/AE121

Subject: DIGITAL SIGNAL PROCESSING

AMIETE – ET/CS (Current & New Scheme)

Time: 3 Hours

December 2016

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

- a. Which of the following best defines Nyquist frequency?
 - (A) The frequency of resonance for the filtering circuit
 - (B) The second harmonic
 - (C) The lower frequency limit of sampling
 - (D) The highest frequency component of a given analog signal
- b. If G(f) represents the Fourier Transform of a signal g(t) which is real and odd symmetric in time, then G(f) is
 (A) complex
 (B) imaginary
 (C) real
 (D) real and non-negative
- c. A band pass signal extends from 1 kHz to 2 kHz. The minimum sampling frequency needed to retain all information in the sampled signal is
 (A) 1 kHz
 (B) 2 kHz

(C) 3 kHz	(D) 4 kHz
--------------------	--------------------

d. The step response of an LTI system when the impulse response h(n) is unit step u(n) is

(A) n+1	(B) n
(C) n-1	(D) n^2

e. Determine the convolution sum of two sequences x(n) = {1, 2, 1, 2} and h(n) = {1, 0, 1, 0}
(A) y(n) = {1,2,1,2,1,0,1}
(B) y(n) = {1,2,2,4,2,1,0}

(11) f(11) = (1,2,1,2,1,0,1)	$(\mathbf{D}) f(\mathbf{n}) = (1, 2, 2, 1, 2, 1, 0)$
(C) $y(n) = \{0, 2, 1, 4, 2, 2, 1\}$	$\{ (D) y(n) = \{1, 2, 2, 4, 1, 2, 0\} \}$

1

f. What is the N-point Discrete Fourier Transform (DFT) of the following sequence: x[n]=δ[n]?
 (A) 1

(A) 1	(B) 2
(C) π	(D) 1/π

g. Calculate DFT of x (n) = $\{1, 0, 1, 0\}$ (A) X(k) = $\{2, 0, 2, 0\}$ (B) X(k) = $\{1, 0, 1, 0\}$ (C) X(k) = $\{2, 0, 1, 0\}$ (D) X(k) = $\{0, 0, 1, 1\}$

ROLL NO.

- Subject: DIGITAL SIGNAL PROCESSING
- h. The FFT algorithms:

(A) Eliminate the redundant calculation and enable to analyze the spectral properties of a signal.

(**B**) Enable the redundant calculation and redundant to analyze the spectral properties of a signal.

- (C) Both (A) and (B) are correct
- (D) Both (A) and (B) are wrong
- i. The bilinear transformation mapping between continuous time system function and discrete time system function is

(A) $s = \frac{2}{T} \left(\frac{1+z^{-1}}{1-z^{-1}} \right)$	$(\mathbf{B}) \ s = \frac{T}{2} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$
(C) $s = \frac{2}{T} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$	$(\mathbf{D}) \ s = \frac{T}{2} \left(\frac{1+z^{-1}}{1-z^{-1}} \right)$

j. The Hilbert transformer output signal is a _____ degree phase shift of the input signal.

(A) 0	(B)180
(C) 270	(D) 90

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. The continuous time signal $x_a(t) = \sin(20\pi t) + \cos(40\pi t)$ is sampled with a sampling period T to obtain the discrete time signal $x[n] = \sin(\frac{\pi n}{5}) + \cos(\frac{2\pi n}{5})$. (i) Determine a choice for T consistent with this information. (ii) Is your choice for T in part (i) unique? If so, explain why. If not, specify another choice of T consistent with the information given. (8)
 - b. Explain in detail about the following terms (8) (i) Sampling (ii) Quantization (iii) Aliasing (iv) Nyquist rate

Q.3 When the input to an LTI system is $x[n] = \left(\frac{1}{2}\right)^n u[n] + 2^n u[-n-1]$, the output is

$$y[n] = 6\left(\frac{1}{2}\right)^n u[n] - 6\left(\frac{3}{4}\right)^n u[n].$$

(i) Find the system function H(z) of the system. Plot the poles and zeros of H(z), and indicate the region of convergence.

(ii) Find the impulse response h[n] of the system for all values of n.

- (iii) Write the difference equation that characterizes the system.
- (iv) Is the system stable? Is it causal?

(16)

ROLL NO.

Code: AE77/AC77/AE121

Subject: DIGITAL SIGNAL PROCESSING

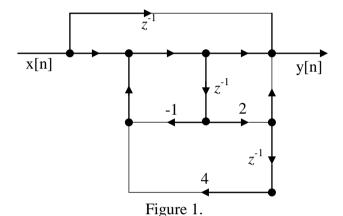
Q.4 a. For the system function $H(z) = \frac{2 - \frac{8}{3}z^{-1} - 2z^{-2}}{\left(1 - \frac{1}{3}z^{-1}\right)\left(1 + \frac{2}{3}z^{-1}\right)}$, draw a signal flow graph that

implements this system as a parallel combination of first order transposed direct form II sections. (6)

b. The signal flow graph for a causal discrete time LTI system is shown in Figure 1. Branches without gains explicitly indicated have a gain of unity.

(i) Determine h[1], the impulse response at n = 1.

(ii) Determine the difference equation relating x[n] and y[n]. (10)



Q.5 a. Use Kaiser window method to design a discrete time filter with generalized linear phase that meets specifications of the following form:

$$\begin{aligned} \left| H(e^{j\omega}) \right| &\leq 0.01 \qquad 0 \leq \left| \omega \right| \leq 0.25\pi \\ 0.95 \leq \left| H(e^{j\omega}) \right| \leq 1.05 \qquad 0.35\pi \leq \left| \omega \right| \leq 0.6\pi \\ \left| H(e^{j\omega}) \right| \leq 0.01 \qquad 0.65\pi \leq \left| \omega \right| \leq \pi \end{aligned}$$

(i) Determine the minimum length of the impulse response and the value of the Kaiser window parameter β for a filter that meets the proceeding specifications. (ii) What is the delay of the filter?

(iii) Determine the ideal response $h_d[n]$ to which the Kaiser window should be applied. (8)

b. Design a type I lowpass Chebyshev filter that has a 1-dB ripple in the pass band, a cutoff frequency $\Omega_p = 1000\pi$, a stopband frequency of 2000π , and an attenuation of 40 dB or more for $\Omega \ge \Omega_s$. Also determine the order and poles of the filter. (8)

Q.6 a. Determine the Discrete Fourier transform of the following signals. (i) $x_1(n) = u(n)$, (ii) $x_1(n) = (\cos \omega_0 n)u(n)$. (8)

b. Prove the following DFT properties: (8)
(i) circular shift of a sequence
(ii) Duality

Code: AE77/AC77/AE121

Subject: DIGITAL SIGNAL PROCESSING

- Q.7 Compute the eight point DFT of the sequence $x(n) = \left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0\right\}$ using the inplace radix-2 decimation in time and radix-2 decimation in frequency algorithms. (16)
- Q.8 a. Explain in detail about time dependent Fourier analysis of speech signals and radar signals.
 (8)
 - b. Derive the expression for estimation of the autocorrelation and power spectrum of random signals. (8)
- Q.9 a. Consider a sequence x[n] with discrete time Fourier transform X(e^{jω}). The sequence x[n] is real valued and casua, and Re{X(e^{jω})} = 2-2a cos ω. Determine, Im{X(e^{jω})}.
 (4)
 - b. Find the Hilbert transforms $x_i[n] = H\{x_r[n]\}$ of the following sequences: (i) $x_r[n] = \cos \omega_0 n$. (6)
 - c. The imaginary part of $X(e^{j\omega})$ for a causal, real sequence x[n] is $X_1(e^{j\omega}) = 2\sin\omega - 3\sin 4\omega$. Additionally, it is known that $X(e^{j\omega})\Big|_{\omega=0} = 6$. Find x[n]. (6)