Code: AE74/AE122/AC122

ROLL NO.

Subject: VLSI DESIGN

AMIETE – ET/CS (Current & New Scheme)

Time: 3 Hours

December 2016

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

• Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best altern	native in the following:	(2×10)			
	a. Choose the fastest E-beam mask de	signing technique.				
	(A) Vector Scanning	(B) Raster Scanning				
	(C) Both (A) & (B)	(D) Raw Scanning				
	b. Which technology offers highest mobility?					
	(A) Bi-CMOS	(B) CMOS				
	(C) NMOS	(D) GaAs				
	c. Permittivity for afree space is given by					
	(A) $5.85 \times 10^{-14} \mathrm{Fcm}^{-1}$	(B) $8.85 \times 10^{-14} \mathrm{Fcm}^{-1}$				
	(C) $9.85 \times 10^{-14} \mathrm{Fcm}^{-1}$	(D) 8.85×10^{-14} Fcm				
	d. Is it true that fast clock switching in digital VLSI circuits increase leakage power consumption as compared to static one?					
	(A) True	(B) False				
	(C) Depends upon the application	(D) None of these				
	e. The cost of memory	as access time is decreased				
	(A) Remains the same	(B) Increases				
	(C) Decreases	(D) May increase or decrease				
	f. For n inputs in a Wallace tree, growth of an adder cell is given by					
	(A) $\log_2(1/n)$	(B) $\log_2(n)$				
	(C) $\log_{10}(n)$	(D) None of these				
	g. Which device uses two metal layers in its stick encoding?					
	(A) nMOS	(B) CMOS				
	(C) Both (A) & (B)	(D) BiCMOS				
	h. Choose as a remedy for CMOS late	ch up problem from the following choice (\mathbf{P}) Introduction of guard rings	es			
	(A) Decrease substrate doping leve (C) Deth (A) \approx (D)	(D) Incoduction of guard rings				
	(C) Both (A) α (B)	(D) increasing contact resistance				

\

ROLL NO.

Subject: VLSI DESIGN

(10)

(8)

i. BIST is helpful in
(A) Reduction in test time
(C) Both (A) & (B)

(**B**) Increasing test data volume

- **(D)** None of these
- j. RC delay ________ when line width becomes smaller.(A) Increases(B) Decreases(C) Both (A) & (B)(D) Can't Say

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. Calculate $Z_{P.U}/Z_{P.D}$ for an nMOS inverter driven by another nMOS inverter. (6)
 - b. Describe working of an nMOS transistor. Also derive expressions for g_m , g_{ds} and $\omega_{o.}$
- Q.3 a. Give Flow Diagram of Berkeley CMOS (n-well) fabrication technique. (4)
 - b. In an nMOS transistor operating at room temperature following measurements are done $V_{GS}=4V$ $V_{SB}=2.6V$ $V_{DS}=4V$ $I_D=144\mu A$ and the process parameters are W/L=1, $t_{ox}=400\text{ Å}$, $|2\Phi_F| = 0.64 \text{ V}\&N_A=10^{16}/\text{cm}^3$ Find V_{th} , electron mobility and body effect coefficient. Assume oxide charge $Q_{OX}=0$
 - c. Calculate C_{in} and C_{out} values of capacitances for the below given structure. (4)

Given

Capacitance	Value in $pF \times 10^{-4}/\mu m^2$ (Relative values in brackets)						
	5 µn	5 µm		2 µm		1.2 µm	
Gate to channel	4	(1.0)	8	(1.0)	16	(1.0)	
Diffusion (active)	1	(0.25)	1.75	(0.22)	3.75	(0.23)	
Polysilicon* to substrate	0.4	(0.1)	0.6	(0.075)	0.6	(0.038)	
Metal 1 to substrate	0.3	(0.075)	0.33	(0.04)	0.33	(0.02)	
Metal 2 to substrate	0.2	(0.05)	0.17	(0.02)	0.17	(0.01)	
Metal 2 to metal 1	0.4	(0.1)	0.5	(0.06)	0.5	(0.03)	
Metal 2 to polysilicon	0.3	(0.075)	0.3	(0.038)	0.3	(0.018)	

Notes: Relative value = specified value/gate to channel value for that technology.

*Poly. 1 and Poly. 2 are similar (also silicides where used).

ROLL NO.

Code:	AE7	4/AE122/AC122 S	ubject: VLSI DESIGN	
Q.4	a.	Discuss Lambda- based design rules for nMOS, pM transistors.	OS and CMOS	(8)
	b.	Draw Super Buffer and explain its advantages.		(8)
Q.5	a.	Explain the importance of Symbolic Diagram and g	ive examples.	(8)
	b.	Explain Inverter delays.		(8)
Q.6	a.	Discuss limitations of scaling in details.		(8)
	b.	Draw the Bi-CMOS Structure of NAND Gate and e	xplain.	(8)
Q.7	a.	Design a 4-bit Shifter and explain.		(8)
	b.	Give a comparison of Adder Enhancement Techniq	ue.	(8)
Q.8	a.	Discuss the design of a pseudo-static RAM cell.		(8)
	b.	Explain BIST.		(8)
Q.9	a.	Analyze qualitatively, the optimization techniques of inverters.	of nMOS and CMOS	(8)
	b.	Explain the design flow of the CAD Tools.		(8)

AMIETE - ET/CS (Current & New Scheme)

3