ROLL NO. __

Code: AE73/AE125

Subject: INFORMATION THEORY & CODING

AMIETE – ET (Current & New Scheme)

Time: 3 Hours

December 2016

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Ouestions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or the best alternative in the following: 0.1

 (2×10) a. The probability of an event A, P(A) obeys (A) $P(A) \ge 0$ **(B)** P(A) < 1(C) P(A) > 1(D) None of these b. A random process x(t) is said to be ______ if its statistics are not affected by a shift in the time origin (A) Stationary (B) Stationary in the wide sense (C) Stationary in the strict sense (**D**) Time invariant c. The average information content per symbol is called (B) Mutual Information (A) Entropy (C) Information Rate (**D**) Source Entropy d. The performance of the encoder is usually measured in terms of (A) Coding rate (**B**) Coding Efficiency (C) Bit rate (**D**) Spectral Efficiency e. The mutual information of the channel in terms of the entropy of the channel output as (A) I(x;y)=H(y)-H(x/y)**(B)** I(x;y)=H(y)+H(x/y)(C) I(x;y)=H(x)-H(x/y)**(D)** I(x;y)=H(x)+H(x/y)is a class of error correcting cyclic codes with $d_{min} \ge 2t+1$ (A) Reed Solomon Codes (**B**) BCH Codes (C) Hamming Codes (**D**) Cyclic Codes

(**B**) Watts/Hz

1

(**D**) Symbols per second

g. Channel capacity is measured in (A) Frequency (C) Bits per second

f.

ROLL NO.

Code: AE73/AE125

Subject: INFORMATION THEORY & CODING

h. If each of 2^k code words are expressed as a linear combination of K linearly independent code vectors, then the code is called (A) Symmetric codes (**B**) Linear Codes (C) Non linear block codes (D) Systematic linear block codes i. The number of parity check bits of a q burst error correcting code must be (A) n-k<2q**(B)** n-k>2q(**C**) n-k<2q (\mathbf{D}) n-k>2q j. A linear block code with a minimum distance d_{min} can correct upto _____ errors and detect upto ______ errors (A) $[(d_{min}-1)/2]$ and $d_{min}-1$ **(B)** $[(d_{min}-1)/2]$ and d_{min} (C) $[(d_{min}+1)/2]$ and $d_{min}-1$ **(D)** $[(d_{min}-1)/2]$ and $d_{min}+1$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Define Probability Mass Function. Consider two random variables x and y, derive the relationships involving joint, marginal and conditional mass functions.
 (8)
 - b. A random variable X takes on one of two values 0 or 1 with probabilities ³/₄ and ¹/₄. Due to noise, the output Y differs from the input occasionally. The behaviour of the system is modelled by the conditional probabilities $P(Y = 1/X = 1) = \frac{3}{4}$ and $P(Y = 0/X = 0) = \frac{7}{8}$ Find P(Y=1) and P(Y=0). Also find P(X = 1/Y = 1). (8)
- Q.3 a. Give the notations and expression for statistical averages, stationary random process, Time average and Ergodicity.
 (8)
 - b. The joint pdf of random variables X and Y is $f_{x,y}(x, y) = \frac{1}{2}$, $0 \le x \le y$, $0 \le y \le 2$. (i) Find the marginal pdf's of $f_x(x)$ and $f_y(y)$. (ii) Are X and Y independent? (8)
- **Q.4** a. A source emits one of four possible messages m_1 , m_2 , m_3 and m_4 with probabilities $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$ and $\frac{1}{8}$, respectively. Calculate the information content of each message and the average information content per message.

2

b. Define and derive the expression for entropy and information rate of Markov Process. (8)

AE73/AE125 / Dec-2016

(8)

ROLL NO. _____

Code: AE73/AE125

Q.5	a.	Apply Huffman Coding procedure for the following message ensemble:	(8)
		$[X] = [x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7]$	
		[P] = [0.4 0.2 0.12 0.08 0.08 0.08 0.04]. Take M=2. Determine the coding efficiency	
	b.	Explain the procedure involved in Shannon Encoding algorithm.	(8)
Q.6	a.	Consider a binary symmetric channel with probability distribution input X and output Y as follows: P(X=0/Y=0) = p; $P(X=1/Y=0) = 1-p$; $P(X=1/Y=1) = p$; $P(X=0/Y=1) = 1-p$; Find the rate of information transmission over this channel when $p=0.9$. Assume that the Bit rate is 1000/sec.	(8)
	b.	Give the various properties of Mutual Information.	(8)
	0.		(0)
Q.7	a.	Derive the capacity of Gaussian Channel using Shannon Hartley Theorem.	(8)
	b.	Calculate the bandwidth of the picture signal in a television. The following are the available data: The number of distinguishable brightness level is 10. The number of elements per picture frame is 300000 and the picture frames transmitted per second is 30 and the S/N required is 30 dB.	(8)
Q.8	a.	Consider a (7, 4) block code generated by $\begin{bmatrix} 1000110\\0100011\\0010101\\0001111 \end{bmatrix}$. Explain, how the error	
		syndrome S helps in correcting a single error?	(8)
	b.	What are the methods of controlling errors? Give the types of errors.	(8)
Q.9	a.	Design an encoder for (7, 4) binary cyclic code generated by $g(x) = 1+x+x^3$ and verify its operation using the message vector (0101)	(8)
	b.	Explain the encoder for Convolutional codes.	(8)

3