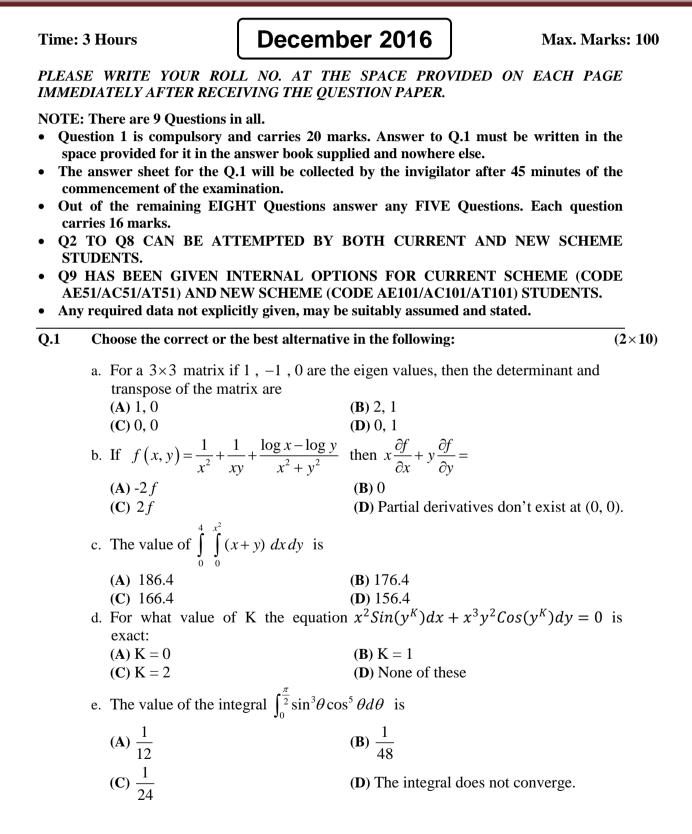
ROLL NO. _

Code: AE51/AC51/AT51/ AE101/AC101/AT101 Subject: ENGINEERING MATHEMATICS-I

AMIETE – ET/CS/IT (Current & New Scheme)



1

ROLL NO. _

Code: AE51/AC51/AT51/ AE101/AC101/AT101 Subject: ENGINEERING MATHEMATICS-I

f. Let A be a 2 × 2 matrix with non-zero entries such that $A^2 = I$ then which one of the following is true **(B)** |A| = 0(A) tr(A) = 0(C) |A| = 1(**D**) None of these g. The Particular integral of the differential equation $(D^2 - 1)y = a^x$ is: $(\mathbf{A}) \ \frac{1}{\left(\log a\right)^2 \ -1}$ **(B)** $\frac{1}{(\log x)^2 - 1} a^x$ $(\mathbf{C}) \ \frac{1}{\left(\log a\right)^2} a^x$ **(D)** $\frac{1}{(\log a)^2 - 1} a^x$. h. Consider the series $x_{n+1} = \frac{x_n}{2} + \frac{9}{8x_n}$, $x_0 = 0.5$ is obtained from the Newton Raphson method. The series converges to (A) 1.5 **(B)** 1.98 (C) 1.8 **(D)** 2 i. The Fourier Transformation of the exponential signal e^{jw_0t} is (**B**) A rectangular gate (A) A constant (D) A series of impulses (C) An impulse j. If P_n is the Legendre function then the value of $\int_{-1}^{1} P_n(x) dx$ is **(A)** 1 **(B)** 0 (C) 1 if n is even, 0 if n is odd (D) The integral doesn't converge

> Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. If
$$u = (1 - 2xy + y^2)^{-\frac{1}{2}}$$
 Prove that $x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = y^2 u^3$. (8)

b. If
$$u = \sin^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$$
, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}\tan u$. (8)

Q.3 a. Evaluate
$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^1 \frac{dz \, dy \, dx}{\sqrt{x^2+y^2+z^2}}$$
. (8)

b. Find the area lying inside the cardioid $r = a (1 + \cos \theta)$ and outside the circle r = a. (8)

Q.4 a. Reduce the following matrix to the normal form and determine its rank $\begin{bmatrix} 1 & -1 & 3 \\ 3 & 2 & 1 \\ 7 & -2 & 13 \end{bmatrix}$. (8)

2

ROLL NO. ____

Code: AE51/AC51/AT51/ AE101/AC101/AT101 Subject: ENGINEERING MATHEMATICS-I

		$\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$	
	b.	Find the characteristic equation of the matrix, $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence compute	ute A^{-1} .
			(8)
Q.5	a.	Use Newton-Raphson method to find the real root of the equal $x \log_{10} x = 1.2$ correct to three decimal places.	ntion (8)
		$x \log_{10} x = 1.2$ contect to three decimal places.	(0)
	b.	Using Runge-Kutta method of order 4, solve $\frac{dy}{dx} = \frac{y^2 + x^2}{y^2 - x^2}$ with $y(0) =$	1 at
		x = 0.2, 0.4.	(8)
Q.6	a.	Solve the differential equation $x^3 \frac{d^3 y}{dx^3} + 3x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + 8y = 65 \cos(\log x)$	g(x).
	b.	Solve the system of differential equations	(8)
	0.	(D-1)x + Dy = 2t + 1,	(8)
		(2D+1)x+2Dy=t.	
Q.7	a.	Show that $\iiint_V x^{l-1} y^{m-1} z^{n-1} dx dy dz = \frac{\Gamma(l)\Gamma(m)\Gamma(n)}{\Gamma(l+m+n)}$ where V is the region	gion
		$x \ge 0, y \ge 0, z \ge 0$ and $x + y + z \le 1$	(8)
	b.	Solve by Frobenius method $(1+x^2)y'' + xy' - y = 0.$	(8)
Q.8	a.	Show that $4J_0''(x) + 3J_0'(x) + J_3(x) = 0$	(8)
	b.	Prove that $P'_{n+1} + P'_n = P_0 + 3P_1 + 5P_2 + + (2n+1)P_n$ Where $P_n(x)$ is	the
		legendre's polynomial.	(8)
Q.9	(Fe	or Current Scheme students i.e. AE51/AC51/AT51)	
	a.	Solve the differential equation $xy(1+xy^2)\frac{dy}{dx}=1$.	(8)
	h	Solve $xdy - ydx = \sqrt{x^2 + y^2}dx$	(8)
			(0)
Q.9	(Fo	or New Scheme students i.e. AE101/AC101/AT101) $\begin{bmatrix} x, & 0 < x < 1, \end{bmatrix}$	
	a.	Find the Fourier cosine transform of $f(x) = \begin{cases} x, & 0 < x < 1, \\ 2 - x, & 1 < x < 2, \\ 0, & x > 2. \end{cases}$	(8)
		igl(0, x > 2. igr)	
	b.	Find the z-transform of $a^n \cosh n\theta$.	(8)
AFF1		51/ΔΤ51/ 3 ΔΜΙΕΤΕ – ΕΤ/CS	//〒

3

0