\qquad

Code: AE51/AC51/AT51/ AE101/AC101/AT101 Subject: ENGINEERING MATHEMATICS-I

AMIETE - ET/CS/IT (Current \& New Scheme)

Time: 3 Hours

December 2016

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q .} 1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Q2 TO Q8 CAN BE ATTEMPTED BY BOTH CURRENT AND NEW SCHEME STUDENTS.
- Q9 HAS BEEN GIVEN INTERNAL OPTIONS FOR CURRENT SCHEME (CODE AE51/AC51/AT51) AND NEW SCHEME (CODE AE101/AC101/AT101) STUDENTS.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. For a 3×3 matrix if $1,-1,0$ are the eigen values, then the determinant and transpose of the matrix are
(A) 1,0
(B) 2,1
(C) 0,0
(D) 0,1
b. If $f(x, y)=\frac{1}{x^{2}}+\frac{1}{x y}+\frac{\log x-\log y}{x^{2}+y^{2}}$ then $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=$
(A) $-2 f$
(B) 0
(C) $2 f$
(D) Partial derivatives don't exist at $(0,0)$.
c. The value of $\int_{0}^{4} \int_{0}^{x^{2}}(x+y) d x d y$ is
(A) 186.4
(B) 176.4
(C) 166.4
(D) 156.4
d. For what value of K the equation $x^{2} \operatorname{Sin}\left(y^{K}\right) d x+x^{3} y^{2} \operatorname{Cos}\left(y^{K}\right) d y=0$ is exact:
(A) $\mathrm{K}=0$
(B) $\mathrm{K}=1$
(C) $\mathrm{K}=2$
(D) None of these
e. The value of the integral $\int_{0}^{\frac{\pi}{2}} \sin ^{3} \theta \cos ^{5} \theta d \theta$ is
(A) $\frac{1}{12}$
(B) $\frac{1}{48}$
(C) $\frac{1}{24}$
(D) The integral does not converge.

ROLL NO.

\qquad

Code: AE51/AC51/AT51/ AE101/AC101/AT101 Subject: ENGINEERING MATHEMATICS-I

f. Let A be a 2×2 matrix with non-zero entries such that $A^{2}=I$ then which one of the following is true
(A) $\operatorname{tr}(A)=0$
(B) $|A|=0$
(C) $|A|=1$
(D) None of these
g. The Particular integral of the differential equation $\left(D^{2}-1\right) y=a^{x}$ is:
(A) $\frac{1}{(\log a)^{2}-1}$
(B) $\frac{1}{(\log x)^{2}-1} a^{x}$
(C) $\frac{1}{(\log a)^{2}} a^{x}$
(D) $\frac{1}{(\log a)^{2}-1} a^{x}$.
h. Consider the series $x_{n+1}=\frac{x_{n}}{2}+\frac{9}{8 x_{n}}, x_{0}=0.5$ is obtained from the Newton Raphson method. The series converges to
(A) 1.5
(B) 1.98
(C) 1.8
(D) 2
i. The Fourier Transformation of the exponential signal $e^{j w_{0} t}$ is
(A) A constant
(B) A rectangular gate
(C) An impulse
(D) A series of impulses
j. If P_{n} is the Legendre function then the value of $\int_{-1}^{1} P_{n}(x) d x$ is
(A) 1
(B) 0
(C) 1 if n is even, 0 if n is odd
(D) The integral doesn't converge

Answer any FIVE Questions out of EIGHT Questions.
Each question carries 16 marks.
Q. 2 a. If $u=\left(1-2 x y+y^{2}\right)^{-\frac{1}{2}}$ Prove that $x \frac{\partial u}{\partial x}-y \frac{\partial u}{\partial y}=y^{2} u^{3}$.
b. If $u=\sin ^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u$.
Q. 3 a. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{1} \frac{d z d y d x}{\sqrt{x^{2}+y^{2}+z^{2}}}$.
b. Find the area lying inside the cardioid $r=a(1+\cos \theta)$ and outside the circle

$$
\begin{equation*}
r=a . \tag{8}
\end{equation*}
$$

Q. 4 a. Reduce the following matrix to the normal form and determine its rank

$$
\left[\begin{array}{ccc}
1 & -1 & 3 \tag{8}\\
3 & 2 & 1 \\
7 & -2 & 13
\end{array}\right] .
$$

ROLL NO.

Code: AE51/AC51/AT51/ AE101/AC101/AT101 Subject: ENGINEERING MATHEMATICS-I

b. Find the characteristic equation of the matrix, $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ and hence compute A^{-1}.
(8)
Q. 5 a. Use Newton-Raphson method to find the real root of the equation $x \log _{10} x=1.2$ correct to three decimal places.
b. Using Runge-Kutta method of order 4 , solve $\frac{d y}{d x}=\frac{y^{2}+x^{2}}{y^{2}-x^{2}}$ with $y(0)=1$ at $x=0.2,0.4$.
Q. 6 a. Solve the differential equation $x^{3} \frac{d^{3} y}{d x^{3}}+3 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+8 y=65 \cos (\log x)$.
b. Solve the system of differential equations
$(D-1) x+D y=2 t+1$,
$(2 D+1) x+2 D y=t$.
Q. 7 a. Show that $\iiint_{V} x^{l-1} y^{m-1} z^{n-1} d x d y d z=\frac{\Gamma(l) \Gamma(m) \Gamma(n)}{\Gamma(l+m+n)}$. where V is the region $x \geq 0, y \geq 0, z \geq 0$ and $x+y+z \leq 1$
b. Solve by Frobenius method $\left(1+x^{2}\right) y^{\prime \prime}+x y^{\prime}-y=0$.
Q. 8 a. Show that $4 J_{0}^{\prime \prime \prime}(x)+3 J_{0}^{\prime}(x)+J_{3}(x)=0$
b. Prove that $P_{n+1}^{\prime}+P_{n}^{\prime}=P_{0}+3 P_{1}+5 P_{2}+\ldots+(2 n+1) P_{n}$ Where $P_{n}(x)$ is the legendre's polynomial.
Q. 9 (For Current Scheme students i.e. AE51/AC51/AT51)
a. Solve the differential equation $x y\left(1+x y^{2}\right) \frac{d y}{d x}=1$.
b. Solve $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$

Q. 9 (For New Scheme students i.e. AE101/AC101/AT101)

a. Find the Fourier cosine transform of $f(x)=\left\{\begin{array}{cc}x, & 0<x<1, \\ 2-x, & 1<x<2, \\ 0, & x>2 .\end{array}\right.$
b. Find the z-transform of $a^{n} \cosh n \theta$.

