ROLL NO. _

Code: AC74/AT74/AC123/AT123 Subject: ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS

AMIETE – CS/IT (Current & New Scheme)

Time	: 3 Hours	December -2016	Max. Marks: 100
PLEA IMMI NOTH • Qu sp • Th co • Ou ca • An	SE WRITE YOUR ROLL EDIATELY AFTER RECEIV E: There are 9 Questions in testion 1 is compulsory and ace provided for it in the ar- be answer sheet for the Q.1 formencement of the examinant of the remaining EIGH arries 16 marks.	NO. AT THE SPACE PROVI WING THE QUESTION PAPER. all. I carries 20 marks. Answer to Q. aswer book supplied and nowhere e will be collected by the invigilato ation. T Questions answer any FIVE (ly given, may be suitably assumed	DED ON EACH PAGE 1 must be written in the else. or after 45 minutes of the Questions. Each question and stated.
Q.1	Choose the correct or t	he best alternative in the follow	ing: (2×10)
	 a. What is Artificial interaction (A) Putting your interaction (B) Programming with (C) Making a Machin (D) Playing a Game 	elligence? ligence into Computer h your own intelligence he intelligent	
	 b. Which search method (A) Depth-First Search (C) Both (A) and (B) 	l takes less memory? ch (B) Breadth-First (D) Linear Search	search
	 c. In A* approach evalue (A) Heuristic function (B) Path cost from state (C) Path cost from state (D) Average of Path of the state 	ation function is n art node to current node art node to current node + Heurist cost from start node to current node	ic cost le and Heuristic cost
	 d. The term one variable at a time assign. (A) Forward search 	is used for a depth-first search and returns when a variable has r (B) Backtrack sea	that chooses values for no legal values left to
	(C) Hill algorithm	(D) Reverse-Dow	n-Hill search
	 e. Semantic Network re (A) Syntactic relation (B) Semantic relation (C) Both (A) and (B) (D) Neither (A) nor (A) 	presents between concepts s between concepts B)	
	f. Knowledge and reaso	ning also play a crucial role in de _ environment.	aling with
	(A) Completely Obse(C) Neither (A) nor (A)	rvable(B) Partially ObseB)(D) Only (A) and	ervable (B)
	 g. Which search is simil (A) Hill-climbing sea (C) Breadth-first sear 	ar to minimax search?rch(B) Depth-first serch(D) All of these	arch

ROLL	NO.	
------	-----	--

Code: AC74/AT74/AC123/AT123 Subject: ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS

 (A) Disjunction of literals (B) Disjunction of variables (C) Conjuction of literals (D) Conjunction of variables i. A perceptron is: (A) a single layer feed-forward neural network with pre-processing (B) an auto-associative neural network (C) a double layer auto-associative neural network (D) a neural network that contains feedback g. Why is the XOR problem exceptionally interesting to neural network researchers? (A) Because it can be expressed in a way that allows you to use a neural network
 (C) Conjuction of literals (D) Conjunction of variables i. A perceptron is: (A) a single layer feed-forward neural network with pre-processing (B) an auto-associative neural network (C) a double layer auto-associative neural network (D) a neural network that contains feedback g. Why is the XOR problem exceptionally interesting to neural network researchers? (A) Because it can be expressed in a way that allows you to use a neural network
 i. A perceptron is: (A) a single layer feed-forward neural network with pre-processing (B) an auto-associative neural network (C) a double layer auto-associative neural network (D) a neural network that contains feedback g. Why is the XOR problem exceptionally interesting to neural network researchers? (A) Because it can be expressed in a way that allows you to use a neural network
 (A) a single layer feed-forward neural network with pre-processing (B) an auto-associative neural network (C) a double layer auto-associative neural network (D) a neural network that contains feedback g. Why is the XOR problem exceptionally interesting to neural network researchers? (A) Because it can be expressed in a way that allows you to use a neural network
 (B) an auto-associative neural network (C) a double layer auto-associative neural network (D) a neural network that contains feedback g. Why is the XOR problem exceptionally interesting to neural network researchers? (A) Because it can be expressed in a way that allows you to use a neural network
 (C) a double layer auto-associative neural network (D) a neural network that contains feedback g. Why is the XOR problem exceptionally interesting to neural network researchers? (A) Because it can be expressed in a way that allows you to use a neural network
 (D) a neural network that contains feedback g. Why is the XOR problem exceptionally interesting to neural network researchers? (A) Because it can be expressed in a way that allows you to use a neural network
 g. Why is the XOR problem exceptionally interesting to neural network researchers? (A) Because it can be expressed in a way that allows you to use a neural network
(A) Because it can be expressed in a way that allows you to use a neural network
(B) Because it is complex binary operation that cannot be solved using neural networks
(C) Because it can be solved by a single layer perceptron
(D) Because it is the simplest linearly inseparable problem that exists.
Answer any FIVE Questions out of EIGHT Questions.
Each question carries 16 marks.

- Q.2 a. Explain Turing test. List major AI technologies. (6+2)
 - b. Explain in detail with examples supervised and unsupervised learning in neural networks. Illustrate feed forward neural network architecture with diagram. (3+3+2)
- Q.3 a. What is traveling salesperson problem? How can it be solved? Explain Heuristic function. (3+3+2)
 - b. What are expert systems? Explain the various components and give conceptual diagram for the same. (2+6)
- **Q.4** a. Specify a global database, rules, termination condition and solution for a production system to solve the following water jug problem.

Water Jug Problem:Given an unmarked 4 litre jug filled with water and an
empty unmarked 3 litre jug. How can one obtain precisely 2 litre water in 3
litre jug? Water may either be discarded or poured from one jug to another or
fill with water pump.(2+2+2+2)

- b. What are the desirable properties of knowledge representation systems?
 Explain Logical and procedural knowledge representation methods. (2+3+3)
- Q.5 a. What are semantic networks? Explain with an example. Give semantic network representation of the sentence: *John gave Mary the book*. (3+2+3)
 - b. What is uncertain reasoning? Explain with an example. Explain nonmonotonic reasoning. (4+4)

ROLL NO. _

Code: AC74/AT74/AC123/AT123 Subject: ARTIFICIAL INTELLIGENCE & NEURAL NETWORKS

- Q.6 a. A factory production line is manufacturing bolts using three machines, A, B and C. Of the total output, machine A is responsible for 25%, machine B for 35% and machine C for the rest. It is known from previous experience with the machines that 5% of the output from machine A is defective, 4% from machine B and 2% from machine C. A bolt is chosen at random from the production line and found to be defective. State Baye's theorem. What is the probability that it came from (i) machine A (ii) machine B (iii) machine C? (2+2+2+2)
 - b. Explain two blind search techniques. Illustrate in detail hill climbing strategy.(2+2+4)
- **Q.7** a. Consider the following axioms:
 - 1. All hounds howl at night.
 - 2. Anyone who has any cats will not have any mice.
 - 3. Light sleepers do not have anything which howls at night.
 - 4. John has either a cat or a hound.
 - Prove following using predicate logic resolution theorem:
 - "If John is a light sleeper, then John does not have any mice. (8)
 - b. Explain the perception training and learning algorithm with examples. (4+4)
- Q.8 a. A partial search tree for a two player game is given below.
 (i) Find the best move for the MAX player using the minimax procedure.
 (ii) Using alpha-beta pruning show which parts of the tree do not need to be searched. Indicate where the cutoffs occur. (3+5)

- b. Give four prominent features of comparison between conventional computers and neural networks. (8)
- Q.9 a. Explain constraint satisfaction algorithm. Show the application of this algorithm in solving following crypt-arithmetic puzzle: (such that unique number is assigned to each alphabet between 0-9)
 (8)

b. Explain in detail how AI has contributed to medicine. Illustrate your answer with suitable examples. (8)