ROLL NO.

Code: AC60/AT60

Subject: COMPUTER GRAPHICS

AMIETE – CS/IT (Current Scheme)

Time: 3 Hours

December 2016

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1Choose the correct or the best alternative in the following: (2×10)

- a. The phenomenon of having a continuous glow of a beam on the screen even after it is removed is called as
 - (A) Fluorescence(B) Persistence(C) Phosphorescence(D) Incondescence
- b. Reflection of a point about x-axis, followed by a counter-clockwise rotation of 90° , is equivalent to reflection about the line

(A) $x = -y$	(B) $y = -x$
(C) $x = y$	(D) $x + y = 1$

- c. The point at which a set of projected parallel lines appear to converge is called (A) convergence point (B) vanishing point (C) point of illusion (D) point of fusion
- d. x = at²; y = at is the parametric equation of
 (A) circle
 (B) rectangular hyperbola
 (C) Parabola
 (D) ellipse
- e. The anti-aliasing technique which allows shift of ¹/₄, ¹/₂, and ³/₄ of a pixel diameter enabling a closer path of a line is
 (A) pixel phasing
 (B) filtering
 - (C) Intensity compensation (D) supersampling
- f. Control points are used to control the _____ of the curve.
 (A) shape (B) iterations
 (C) edges (D) values
- g. Oblique projection with an angle of 45° to the horizontal plane is called as
 (A) Isometric projection
 (B) Cavalier projection
 (D) Cabinet projection

1

ROLL NO.

Cod	de: AC60/AT60 Subject: COMPU	UTER GRAPHICS			
	h. The kind of phosphor that is preferred for animation displays	is of			
	(A) normal persistence (B) high persistence				
	(C) low persistence (D) medium persistence				
	i ICD is categorized under which type of display device?				
	(A) emissive (B) thin-plate				
	(C) non-emissive (D) None of these				
	i The minimum number of points required to draw a curve is				
	(A) 3 (B) 6				
	$(\mathbf{A}) = \mathbf{B} = \mathbf{C}$				
	(\mathbf{C}) \mathbf{S} (\mathbf{D}) \mathbf{Z}				
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.					
Q.2	a. What is a frame buffer? Explain the task of a display contro raster on a monochrome display with an average acc nanoseconds per pixel, what is the refresh rate?	oller. In a 512×512 cess rate of 200 (2+2+4)			
	b Describe the following briefly:	(4+4)			
	(i) Keyboard	(+++)			
	(ii) Touch panel				
	() Town parts				
Q.3	a. Write an OpenGL code to open an initial windows for drawin any three functions used in the code.	ng. Briefly explain (8)			
	b. Find the normalized transformation from the window whose l at (0,0) and upper right corner is at (4,3) on to the normalize that aspect ratios are preserved.	lower left corner is d device screen so (5)			
	c. Discuss in short Window-to-Viewpoint Mapping.	(3)			
Q.4	a. Explain in detail the Cohen-Sutherland algorithm using suitab	ble figures. (8)			
	b. Briefly discuss the OpenGL routine that implements the C for clipping lines against a convex polygon. Also give t	yrus-Beck Clipper			
	Cyrus-Beck algorithm.	(8)			
Q.5	a. Show that the product of a translation matrix and its inverse matrix in a 3D coordinate system.	e produces identity (5)			
	b. Show that the concatenation of two successive scaling transforis multiplicative.	ormation operation (5)			
	c. Rotate an object defined by A(0,0), B(1,0), C(1,1), (anticlockwise) about the origin. Give the transformed c object.	D(0,1) by 45° coordinates of the (6)			

2

ROLL NO. _

Code: AC60/AT60Subject: COMPUTER GRAPHI		CS	
Q.6	a. Describe pixmaps and useful operation	s on them.	(8)
	b. Give useful data types for pixmaps		(4)
	c. Discuss three commonly used antialias	ing techniques.	(4)
Q.7	a. Give the taxonomy of projection and ex	xplain it.	(8)
	b. Derive the general equation and give oblique projection. What do you conclu	its equivalent matrix representation for ude from the derived equations?	(8)
Q.8	a. In order to yield realistic shading wh demerits of Gouraud shading and write	at points must be considered? State the the steps for performing Phong shading.	(8)
	b. What are image space algorithms? Dissuitable figure that illustrates how vise disadvantage of the algorithm.	scuss the depth-buffer algorithm using a ible surfaces can be detected. Give one	(8)
Q.9	a. In what way are polynomials useful order polynomials are not suitable for a	in curve designing? Explain why high curve design.	(8)
	b. What are Bezier Curves? Give the prop	erties of the Bezier Curves.	(8)