ROLL NO.

Code: AC59/AT59/AC110/AT110

Subject: OPERATING SYSTEMS & SYSTEMS SOFTWARE

AMIETE – CS/IT (Current & New Scheme)

Time: 3 Hours

December 2016

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions, selecting at least TWO questions from each part. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

- a. In which type of Operating System the response time is critical? (A) Batch Operating System (B) Unix Operating System (C) Real Time Operating System (**D**) Network Operating System b. Which scheduler selects the processes to be brought into the Ready Queue? (A) Long Term Scheduler (**B**) Mid Term Scheduler (C) Short Term Scheduler (D) Real Term Scheduler c. Fork is: (A) The dispatching of a task (**B**) The creation of a new job (C) The creation of a new process (**D**) Increasing the priority of a task d. The address of the next instruction to be executed by the current process is provided by the (A) CPU registers (B) Program counter (C) Process stack (**D**) Pipe e. To differentiate the many network services, a system support _____ are used. (A) Variables (B) Sockets (C) Ports **(D)** Service names f. Which module gives control of the CPU to the process selected by the shortterm scheduler? (A) Queue (**B**) Interrupt (C) Scheduler (**D**) Dispatcher g. Which of the following system software resides in main memory always? (A) Text Editor **(B)** Assembler
 - (A) Text Editor(B) Assemt(C) Linker(D) Loader

ROLL NO.

Code: AC59/AT59/AC110/AT110 Subject: OPERATING SYSTEMS & SYSTEMS SOFTWARE

h.	In a time-sharing operating system, completed, the process goes from the	when the time slot given to a process is e running state to the:			
	(A) Blocked state	(B) Ready state			
	(C) Suspended state	(D) Terminated state			
i.	Which of the following statement(s)	are true?			
	I. Shortest remaining time first sched	test remaining time first scheduling may cause starvation			
II. Preemptive scheduling may cause starvation					
	III Downd robin is botton than ECES	in tarma of rean once time			

III. Round robin is better than FCFS in terms of response time (A) I only **(B)** I and III only

(C) II and III only

- j. In a two pass assembler the object code generation is done during the: (A) Zeroeth Pass (B) First Pass
 - (C) Second Pass

(**D**) I, II and III

(D) Not done by assembler

PART A Answer at least TWO questions. Each question carries 16 marks.

Q.2 a. Consider the following set of processes with their arrival times and burst time in minutes. (10)

Process ID	Arrival Time	Burst Cycle Time
1	0	5
2	1	15
3	3	12
4	7	25
5	10	5

Calculate the average for the following:

	Turn-around time	Waiting time	Throughput
FCFS			
SJN			
Round Robin			

- b. Describe the differences between symmetric and asymmetric multiprocessing. What are three advantages and one disadvantage of multiprocessor systems? (6)
- a. What do you mean by the terms graceful degradation, context switch and Q.3 bootstrap loader? (6)
 - b. Describe the differences among short-term, medium-term, and long term scheduling. What do you mean by I/O bound and CPU bound processes? Which impact do they have on the system utilization? (10)

ROLL NO. _

Code: AC59/AT59/AC110/AT110 Subject: OPERATING SYSTEMS & SYSTEMS SOFTWARE

Q.4	a.	Explain Bankers' algorithm for deadlock avoidance in detail.	(6)		
	b.	Explain the difference between multilevel queue scheduling and multilevel feedback-queue scheduling.	(6)		
	c.	What is MBR? Explain with figure the file system implementation of computer system boot-up.	(4)		
Q.5	a.	What is address binding? Explain the difference between internal and external fragmentation and their solution.	ul (6)		
	b.	Define Segmentation and Thrashing.	(4)		
	c.	Explain with diagram virtual memory implementation using segmentation.	(6)		
PART B Answer at least TWO questions. Each question carries 16 marks.					
		PART B Answer at least TWO questions. Each question carries 16 marks.			
0.6		PART B Answer at least TWO questions. Each question carries 16 marks.	(10)		
Q.6	a.	PART B Answer at least TWO questions. Each question carries 16 marks. Discuss the design of one pass assembler in detail.	(10)		
Q.6	a. b.	PART B Answer at least TWO questions. Each question carries 16 marks. Discuss the design of one pass assembler in detail. Compare one pass assembler with multipass assembler.	(10) (6)		
Q.6 Q.7	a. b. a.	PART B Answer at least TWO questions. Each question carries 16 marks. Discuss the design of one pass assembler in detail. Compare one pass assembler with multipass assembler. Explain dynamic linking in detail.	(10) (6) (8)		
Q.6 Q.7	a. b. a. b.	PART B Answer at least TWO questions. Each question carries 16 marks. Discuss the design of one pass assembler in detail. Compare one pass assembler with multipass assembler. Explain dynamic linking in detail. Compare linking loader and linkage editor.	(10) (6) (8) (8)		
Q.6 Q.7 Q.8	a. b. a. b. a.	PART B Answer at least TWO questions. Each question carries 16 marks. Discuss the design of one pass assembler in detail. Compare one pass assembler with multipass assembler. Explain dynamic linking in detail. Compare linking loader and linkage editor. What are the phases and passes of a language processor?	(10) (6) (8) (8) (6)		
Q.6 Q.7 Q.8	a. b. a. b. a. b.	PART B Answer at least TWO questions. Each question carries 16 marks. Discuss the design of one pass assembler in detail. Compare one pass assembler with multipass assembler. Explain dynamic linking in detail. Compare linking loader and linkage editor. What are the phases and passes of a language processor? Explain in detail any two allocation data structures.	(10) (6) (8) (8) (6) (10)		

b. Explain in detail various parameter passing mechanisms with suitable examples. (8)